Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.
Photosystem I (PSI) uses light energy and electrons supplied by photosystem II (PSII) to reduce NADP(+) to NADPH. PSI is very tolerant of excess light but extremely sensitive to excess electrons from PSII. It has been assumed that PSI is protected from photoinhibition by strict control of the intersystem electron transfer chain (ETC). Here we demonstrate that the iron-sulphur (FeS) clusters of PSI are more sensitive to high light stress than previously anticipated, but PSI with damaged FeS clusters still functions as a non-photochemical photoprotective energy quencher (PSI-NPQ). Upon photoinhibition of PSI, the highly reduced ETC further triggers thylakoid phosphorylation-based mechanisms that increase energy flow towards PSI. It is concluded that the sensitivity of FeS clusters provides an additional photoprotective mechanism that is able to downregulate PSII, based on PSI quenching and protein phosphorylation.
The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced, which can occur in low temperatures or in high light. In this study we used the pgr5 Arabidopsis mutant that lacks ΔpH-dependent regulation of photosynthetic electron transport as a model to study the consequences of PSI photoinhibition under high light. We found that PSI damage severely inhibits carbon fixation and starch accumulation, and attenuates enzymatic oxylipin synthesis and chloroplast regulation of nuclear gene expression after high light stress. This work shows that modifications to regulation of photosynthetic light reactions, which may be designed to improve yield in crop plants, can negatively impact metabolism and signalling, and thereby threaten plant growth and stress tolerance.This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Steady state and time-resolved fluorescence properties of chlorin P6, a potential drug for photodynamic therapy, have been investigated as functions of pH. A decrease in pH of the medium has been shown to cause protonation of the ionizable carboxylic acid side chain, leading to an increase in hydrophobicity and consequent aggregation. The aggregates dissociate on further protonation. The dissociation is explained in terms of formation of cations and their mutual repulsion. A synchronous fluorescence spectroscopic study revealed the presence of two anionic forms in equilibrium at physiological pH, with a shift in the equilibrium on slight decrease in the pH. The anionic nature of chlorin P6 in aqueous solutions at physiological pH has been confirmed by complexation with surfactants. The nature of the charge on the headgroups of the surfactants has been found to govern the formation of chlorin-surfactant complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.