Background The UK 100,000 Genomes Project is in the process of investigating the role of genome sequencing of patients with undiagnosed rare disease following usual care, and the alignment of research with healthcare implementation in the UK’s national health service. (Other parts of this Project focus on patients with cancer and infection.) Methods We enrolled participants, collected clinical features with human phenotype ontology terms, undertook genome sequencing and applied automated variant prioritization based on virtual gene panels (PanelApp) and phenotypes (Exomiser), alongside identification of novel pathogenic variants through research analysis. We report results on a pilot study of 4660 participants from 2183 families with 161 disorders covering a broad spectrum of rare disease. Results Diagnostic yields varied by family structure and were highest in trios and larger pedigrees. Likely monogenic disorders had much higher diagnostic yields (35%) with intellectual disability, hearing and vision disorders, achieving yields between 40 and 55%. Those with more complex etiologies had an overall 25% yield. Combining research and automated approaches was critical to 14% of diagnoses in which we found etiologic non-coding, structural and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohort-wide burden testing across 57,000 genomes enabled discovery of 3 new disease genes and 19 novel associations. Of the genetic diagnoses that we made, 24% had immediate ramifications for the clinical decision-making for the patient or their relatives. Conclusion Our pilot study of genome sequencing in a national health care system demonstrates diagnostic uplift across a range of rare diseases. (Funded by National Institute for Health Research and others)
The effects of stimuli falling outside the 'classical receptive field' and their influence on the orientation selectivity of cells in the cat primary visual cortex are still matters of debate. Here we examine the variety of effects of such peripheral stimuli on responses to stimuli limited to the receptive field. We first determined the extent of the classical receptive field by increasing the diameter of a circular patch of drifting grating until the response saturated or reached a maximum, and by decreasing the diameter of a circular mask in the middle of an extended grating, centred on the receptive field, until the cell just began to respond. These two estimates always agreed closely. We then presented an optimum grating of medium-to-high contrast filling the classical receptive field while stimulating the surround with a drifting grating that had the same parameters as the central stimulus but was varied in orientation. For all but five neurons (of 37 tested), surround stimulation produced clear suppression over some range of orientations, while none showed explicit facilitation under these conditions. For 11 cells (34% of those showing suppression), the magnitude of suppression did not vary consistently with the orientation of the surround stimulus. In the majority of cells, suppression was weakest for a surround grating oriented orthogonal to the cell's optimum. Nine of these cells (28%) exhibited maximum inhibition at the optimum orientation for the receptive field itself, but for 12 cells (38%) there was apparent 'release' from inhibition for surround gratings at or near the cell's optimum orientation and direction, leaving inhibition either maximal at angles flanking the optimum (9 cells) or broadly distributed over the rest of the orientation range (3 cells). This implies the existence of a subliminal facilitatory mechanism, tightly tuned at or near the cell's optimum orientation, extending outside the classical receptive field. For just two cells of 13 tested the preferred orientation for a central grating was clearly shifted towards the orientation of a surrounding grating tilted away from the cell's optimum. The contrast gain for central stimulation at the optimal orientation was measured with and without a surround pattern. For nine of 25 cells tested, surround stimulation at the cell's optimum orientation facilitated the response to a central grating of low contrast (< or =0.1) but inhibited that to a higher-contrast central stimulus: the contrast-response gain is reduced but the threshold contrast is actually decreased by surround stimulation. Hence the receptive field is effectively larger for low-contrast than for high-contrast stimuli. Inhibition from the periphery is usually greatest at or around the cell's optimum, while suppression within the receptive field has been shown to be largely non-selective for orientation. Inhibition by orientations flanking the optimum could serve to sharpen orientation selectivity in the presence of contextual stimuli and to enhance orientational contrast; and ...
Older people with epilepsy are more likely to suffer from dementia, while individuals with dementia are at higher risk of developing epilepsy. Sen et al. consider common mechanisms that might underlie the cognitive deficits observed in both groups by examining findings from epidemiological, neuropsychological, molecular, electrophysiological and brain imaging perspectives.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.