Selective harmonic elimination pulse-width modulation (SHE-PWM) works at low-frequency switching, which reduces switching losses, device stress, and increases energy conversion efficiency. So, it can be an effective control strategy for multilevel inverter working on medium-voltage, high-power industrial energy conversion application. It provides desired output voltage by retaining the requested fundamental component as well as eliminating some low-order harmonics. The application of SHE-PWM in industries is having an influence on precise solvability of complex and non-linear equations. This study presents two recently reported optimisation techniques, namely backtracking search algorithm and differential search algorithm (DSA) for obtaining a more accurate solution of the harmonics elimination problem. The superiority of the proposed optimisation algorithms over the well known ancient algorithm such as genetic algorithm, BEE algorithm and particle swarm optimisation have been established by a comparative study with respect to the possibility of attaining global minima, the rank of convergence rate, and inverter performance analysis. Simulation and experimental results validate the efficacy of the DSA optimisation technique for calculating more precise switching angles that totally eliminate 5th-and 7th-order harmonics with fulfilling the requested fundamental component.
This paper introduces backtracking search algorithm (BSA) to solve the nonlinear transcendental equations to obtain triggering angles of a three phase seven-level cascaded H-bridge (CHB) inverter and also eliminates 5th and 7th order harmonics while satisfying the requested fundamental component. A comparative study has been made in terms of execution time, the statistical probability of achieving global minima, and a rank of convergence rate to establish the supremacy of the BSA optimisation technique over other recognised methods such as genetic algorithm, BEE algorithm, and particle swarm optimisation techniques. Simulation and experimental results confirm the effectiveness and accuracy for obtaining precise switching instants that fruitfully satisfy the required output voltage quality.
This paper introduces backtracking search algorithm (BSA) to solve the nonlinear transcendental equations to obtain triggering angles of a three phase seven-level cascaded H-bridge (CHB) inverter and also eliminates 5th and 7th order harmonics while satisfying the requested fundamental component. A comparative study has been made in terms of execution time, the statistical probability of achieving global minima, and a rank of convergence rate to establish the supremacy of the BSA optimisation technique over other recognised methods such as genetic algorithm, BEE algorithm, and particle swarm optimisation techniques. Simulation and experimental results confirm the effectiveness and accuracy for obtaining precise switching instants that fruitfully satisfy the required output voltage quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.