Adopting effective techniques to automatically detect and identify small drones is a very compelling need for a number of different stakeholders in both the public and private sectors. This work presents three different original approaches that competed in a grand challenge on the “Drone vs. Bird” detection problem. The goal is to detect one or more drones appearing at some time point in video sequences where birds and other distractor objects may be also present, together with motion in background or foreground. Algorithms should raise an alarm and provide a position estimate only when a drone is present, while not issuing alarms on birds, nor being confused by the rest of the scene. In particular, three original approaches based on different deep learning strategies are proposed and compared on a real-world dataset provided by a consortium of universities and research centers, under the 2020 edition of the Drone vs. Bird Detection Challenge. Results show that there is a range in difficulty among different test sequences, depending on the size and the shape visibility of the drone in the sequence, while sequences recorded by a moving camera and very distant drones are the most challenging ones. The performance comparison reveals that the different approaches perform somewhat complementary, in terms of correct detection rate, false alarm rate, and average precision.
Particle Swarm Optimization (PSO), a population based technique for stochastic search in a multidimensional space, has so far been employed successfully for solving a variety of optimization problems including many multifaceted problems, where other popular methods like steepest descent, gradient descent, conjugate gradient, Newton method, etc. do not give satisfactory results. Herein, we propose a modified PSO algorithm for unbiased global minima search by integrating with density functional theory which turns out to be superior to the other evolutionary methods such as simulated annealing, basin hopping and genetic algorithm. The present PSO code combines evolutionary algorithm with a variational optimization technique through interfacing of PSO with the Gaussian software, where the latter is used for single point energy calculation in each iteration step of PSO. Pure carbon and carbon containing systems have been of great interest for several decades due to their important role in the evolution of life as well as wide applications in various research fields. Our study shows how arbitrary and randomly generated small C
n
clusters (
n
= 3–6, 10) can be transformed into the corresponding global minimum structure. The detailed results signify that the proposed technique is quite promising in finding the best global solution for small population size clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.