We consider the scheduling control problem for a family of unitary networks under heavy traffic, with general interarrival and service times, probabilistic routing and infinite horizon discounted linear holding cost. A natural nonanticipativity condition for admissibility of control policies is introduced. The condition is seen to hold for a broad class of problems. Using this formulation of admissible controls and a time-transformation technique, we establish that the infimum of the cost for the network control problem over all admissible sequencing control policies is asymptotically bounded below by the value function of an associated diffusion control problem (the Brownian control problem). This result provides a useful bound on the best achievable performance for any admissible control policy for a wide class of networks.
Some growth asymptotics of a version of 'preferential attachment' random graphs are studied through an embedding into a continuous-time branching scheme. These results complement and extend previous work in the literature.
In this work we study the problem of asymptotically optimal control of a well-known multi-class queuing network, referred to as the "crisscross network," in heavy traffic. We consider exponential interarrival and service times, linear holding cost and an infinite horizon discounted cost criterion. In a suitable parameter regime, this problem has been studied in detail by Martins, Shreve and Soner [SIAM J. Control Optim. 34 (1996) 2133-2171] using viscosity solution methods. In this work, using the pathwise solution of the Brownian control problem, we present an elementary and transparent treatment of the problem (with the identical parameter regime as in [SIAM J. Control Optim. 34 (1996) 2133-2171]) using large deviation ideas introduced in [Ann. Appl. Probab. 10 (2000) 75-103, Ann. Appl. Probab. 11 (2001) 608-649]. We obtain an asymptotically optimal scheduling policy which is of threshold type. The proof is of independent interest since it is one of the few results which gives the asymptotic optimality of a control policy for a network with a more than one-dimensional workload process.
We consider a one-dimensional stochastic control problem that arises from queueing network applications. The state process corresponding to the queue-length process is given by a stochastic differential equation which reflects at the origin. The controller can choose the drift coefficient which represents the service rate and the buffer size b > 0. When the queue length reaches b, the new customers are rejected and this incurs a penalty. There are three types of costs involved: A "control cost" related to the dynamically controlled service rate, a "congestion cost" which depends on the queue length and a "rejection penalty" for the rejection of the customers. We consider the problem of minimizing long-term average cost, which is also known as the ergodic cost criterion. We obtain an optimal drift rate (i.e. an optimal service rate) as well as the optimal buffer size b * > 0. When the buffer size b > 0 is fixed and where there is no congestion cost, this problem is similar to the work in Ata, Harrison and Shepp (Ann. Appl. Probab. 15, 1145-1160, 2005). Our method is quite different from that of (Ata, Harrison and Shepp (Ann. Appl. Probab. 15, 1145-1160, 2005).To obtain a solution to the corresponding Hamilton-JacobiBellman (HJB) equation, we analyze a family of ordinary A.P. Ghoshdifferential equations. We make use of some specific characteristics of this family of solutions to obtain the optimal buffer size b * > 0.
We use observed transmission line outage data to make a Markovian influence graph that describes the probabilities of transitions between generations of cascading line outages. Each generation of a cascade consists of a single line outage or multiple line outages. The new influence graph defines a Markov chain and generalizes previous influence graphs by including multiple line outages as Markov chain states. The generalized influence graph can reproduce the distribution of cascade size in the utility data. In particular, it can estimate the probabilities of small, medium and large cascades. The influence graph has the key advantage of allowing the effect of mitigations to be analyzed and readily tested, which is not available from the observed data. We exploit the asymptotic properties of the Markov chain to find the lines most involved in large cascades and show how upgrades to these critical lines can reduce the probability of large cascades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.