Summary This paper presents a new method for the computation of truncated singular value decomposition (SVD) of an arbitrary matrix. The method can be qualified as deterministic because it does not use randomized schemes. The number of operations required is asymptotically lower than that using conventional methods for nonsymmetric matrices and is at a par with the best existing deterministic methods for unstructured symmetric ones. It slightly exceeds the asymptotical computational cost of SVD methods based on randomization; however, the error estimate for such methods is significantly higher than for the presented one. The method is one‐pass, that is, each value of the matrix is used just once. It is also readily parallelizable. In the case of full SVD decomposition, it is exact. In addition, it can be modified for a case when data are obtained sequentially rather than being available all at once. Numerical simulations confirm accuracy of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.