One challenge in supramolecular chemistry is the design of versatile, self-assembling building blocks to attain total control of arrangement of matter at a molecular level. We have achieved reliable prediction and design of the three-dimensional structure of artificial RNA building blocks to generate molecular jigsaw puzzle units called tectosquares. They can be programmed with control over their geometry, topology, directionality, and addressability to algorithmically self-assemble into a variety of complex nanoscopic fabrics with predefined periodic and aperiodic patterns and finite dimensions. This work emphasizes the modular and hierarchical characteristics of RNA by showing that small RNA structural motifs can code the precise topology of large molecular architectures. It demonstrates that fully addressable materials based on RNA can be synthesized and provides insights into self-assembly processes involving large populations of RNA molecules.
RNA is an attractive biopolymer for nanodesign of self-assembling particles for nanobiotechnology and synthetic biology. Here, we experimentally characterize by biochemical and biophysical methods the formation of thermostable and ribonuclease resistant RNA nanorings previously proposed by computational design. High yields of fully programmable nanorings were produced based on several RNAI/IIi kissing complex variants selected for their ability to promote polygon self-assembly. This self-assembly strategy relying on the particular geometry of bended kissing complexes has potential for developing siRNAs delivery agents.
We report on the modification of membranes by incorporation of phenylenevinylene oligoelectrolytes with the goal of tailoring their optical and electronic properties and their applications. A water-soluble distyrylstilbene oligoelectrolyte (DSSN+), capped at each end with nitrogen bound, terminally charged pendant groups, was synthesized. The photophysical and solvatochromatic properties of DSSN+ and the shorter distyrylbenzene analogue DSBN+ were probed and found to be useful for characterizing insertion into membranes based on phospholipid vesicle systems. A combination of UV/visible absorbance and photoluminescence spectroscopies, together with confocal microscopy, were employed to confirm membrane incorporation. Examination of the emission intensity profile in stationary multilamellar vesicles obtained with a polarized excitation source provides insight into the orientation of these chromophores within lipid bilayers and indicates that these molecules are highly ordered, such that the hydrophobic electronically delocalized region positions within the inner membrane with the long molecular axis perpendicular to the bilayer plane. Cyclic voltammetry experiments provide evidence that DSSN+ and DSBN+ facilitate transmembrane electron transport across lipid bilayers supported on glassy carbon electrodes. Additionally, the interaction with living microorganisms was probed. Fluorescence imaging indicates that DSSN+ and DSBN+ preferentially accumulate within cell membranes. Furthermore, notable increases in yeast microbial fuel cell performance were observed when employing DSSN+ as the electron transport mediator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.