The investment casting method supported with 3D-printing technology, allows the production of unit castings or prototypes with properties most similar to those of final products. Due to the complexity of the process, it is very important to control the dimensions in the initial stages of the process. This paper presents a comparison of non-contact measurement systems applied for testing of photopolymer 3D-printed injection die used in investment casting. Due to the required high quality of the surface parameters, the authors decided to use the DPP (Daylight Polymer Printing) 3D-printing technology to produce an analyzed injection die. The X-ray CT, Structured blue-light scanner and focus variation microscope measurement techniques were used to avoid any additional damages to the injection die that may arise during the measurement. The main objective of the research was to analyze the possibility of using non-contact measurement systems as a tool for analyzing the quality of the surface of a 3D-printed injection die. Dimensional accuracy analysis, form and position deviations, defect detection, and comparison with a CAD model were carried out.
The article presents the results of research aimed at redesigning a jewelry product with the use of modern reverse engineering methods. A detailed review of the literature was conducted and the essence of the application of this technology in the era of Industry 4.0 was presented. The 3D digitization of the research object was performed with the use of Aicon SmartSCAN-HE R8 and DAVID-SLS3 scanners. The obtained better quality file was edited in Autodesk Meshmixer 3.5 software. On the basis of the created model, a 3D print was made using FDM (Fused Deposition Modeling) and DPP (Daylight Polymer Printing) technology with two different materials-HIPS (High Impact Polystyrene) and photopolymer casting resin. The final stage of the work was the measurement of the surface roughness of the B101 (CuSn10P) tin-phosphorus alloy castings made using the method of investment casting.
Investment casting is one of the precise casting methods where disposable wax patterns made in wax injection molds are used to make a casting mold. The production capacity of precision foundry is determined by the time taken for producing wax patterns, which depends on the time taken for wax solidification. Wax injection molds are usually made of aluminum or copper alloys with the use of expensive and time-consuming computer numerical control (CNC) processing, which makes low-volume production unprofitable. To reduce these costs, the authors present a heat transfer analysis of a 3D printed wax injection mold. Due to the low thermal conductivity of the photopolymer resin, the influence of different cooling channels’ shapes was investigated to improve the time of the manufacturing process. Transient thermal analysis was performed using COMSOL software based on the finite element method (FEM) and included a simulation of wax injection mold cooling with cold air (−23 °C), water, and without cooling. The analysis showed that use of cooling channels in the case of photopolymer material significantly reduces the solidification time of the sample (about 10 s shorter), and that under certain conditions, it is possible to obtain better cooling than obtained with the aluminum reference wax injection mold (after approximately 25–30 s). This approach allows to reduce the production costs of low-volume castings.
This paper presents results of a research on the possibilities of applying 3D printed casting models for small production series as alternative to traditional tooling production on automated DisaMatch mould production lines. The main task was to verify and compare the dimensions of the 3D printed models before and after moulding process. The paper discusses main advantages and disadvantages of the 3D printing methods used like FDM (Fused Deposition Modeling)/FFF (Fused Filament Fabrication), SLA (stereolitography) and DPP (Daylight Polymer Printing). Measurement of casting model outside dimension change resulting from moulding sand friction on their surface was made with the use of GOM INSPECT software on the basis of 3D scans made with ATOS TripleScan optical scanner. Hardness of 3D printed models made of ABS, Z-ULTRAT, three different photopolymer resins (from FormLab and Liquid Crystal companies) was verified. The result of the research printed models usability for the foundry industry was presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.