In the 1970s, Erdős asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k, we construct a triangle-free family of line segments in the plane with chromatic number greater than k. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number. arXiv:1209.1595v5 [math.CO]
Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set X in R 2 that is not an axis-aligned rectangle and for any positive integer k produces a family F of sets, each obtained by an independent horizontal and vertical scaling and translation of X , such that no three sets in F pairwise intersect and χ(F) > k. This provides a negative answer to a question of Gyárfás and Lehel for L-shapes. With extra conditions we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries or equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.
Recently, it was proved that triangle-free intersection graphs of n line segments in the plane can have chromatic number as large as (log log n). Essentially the same construction produces (log log n)-chromatic triangle-free intersection graphs of a variety of other geometric shapes-those belonging to any class of compact arcconnected sets in R 2 closed under horizontal scaling, vertical scaling, and translation, except for axis-parallel rectangles. We show that this construction is asymptotically optimal for intersection graphs of boundaries of axis-parallel rectangles, which can be alternatively described as overlap graphs of axis-parallel rectangles. That is, we prove that triangle-free rectangle overlap graphs have chromatic number O(log log n), improving on the previous bound of O(log n). To this end, we exploit a relationship between off-line coloring of rectangle overlap graphs and on-line coloring of interval overlap graphs. Our coloring method decomposes the graph into a bounded number of subgraphs with a tree-like structure that "encodes" strategies of the adversary in the on-line coloring problem. Then, these subgraphs are colored with O(log log n) colors Preliminary version of this paper appeared as: Coloring triangle-free rectangular frame intersection graphs with O(log log n) colors. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.), Graph-Theoretic Concepts in Computer Science (WG 2013). Lecture Notes in Computer Science, vol. 8165, pp. 333-344. Springer, Berlin (2013 Geom (2015) 53:199-220 using a combination of techniques from on-line algorithms (first-fit) and data structure design (heavy-light decomposition).
A family of sets in the plane is simple if the intersection of any subfamily is arc-connected, and it is pierced by a line L if the intersection of any member with L is a nonempty segment. It is proved that the intersection graphs of simple families of compact arc-connected sets in the plane pierced by a common line have chromatic number bounded by a function of their clique number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.