We address air quality (AQ) forecasting as a regression problem employing computational intelligence (CI) methods for the Gdańsk Metropolitan Area (GMA) in Poland and the Thessaloniki Metropolitan Area (TMA) in Greece. Linear Regression as well as Artificial Neural Network models are developed, accompanied by Random Forest models, for five locations per study area and for a dataset of limited feature dimensionality. An ensemble approach is also used for generating and testing AQ forecasting models. Results indicate good model performance with a correlation coefficient between forecasts and measurements for the daily mean PM 10 concentration one day in advance reaching 0.765 for one of the TMA locations and 0.64 for one of the GMA locations. Overall results suggest that the specific modelling approach can support the provision of air quality forecasts on the basis of limited feature space dimensionality and by employing simple linear regression models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.