This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.complex networks | social systems | human dynamics | computational social science | human mobility H uman societies, their organizations, and communities give rise to complex social dynamics that are challenging to understand, describe, and predict. Recently, network science has provided a powerful mathematical framework for describing the structure and dynamics of social systems (1, 2). With deep roots in traditional sociology (3, 4), a central challenge in the description of social systems is understanding social group behavior. Using empirical data, such groups (or communities) have recently been shown to be highly overlapping and organized in a hierarchical manner (5-8).Without an understanding of the fundamental meso-level structures and regularities governing social systems, modeling behavioral patterns remains a challenge (9).Although a coherent mathematical framework is not yet in place, existing research suggests that social dynamics are far from random. For example, the existence of strong regularities for individuals in human populations has been well documented within mobility patterns (10, 11), and in social systems, pair-wise interactions show clear patterns occurring at multiple timescales from seconds to months (12). For groups of interacting individua...
We describe the multi-layer temporal network which connects a population of more than 700 university students over a period of four weeks. The dataset was collected via smartphones as part of the Copenhagen Networks Study. We include the network of physical proximity among the participants (estimated via Bluetooth signal strength), the network of phone calls (start time, duration, no content), the network of text messages (time of message, no content), and information about Facebook friendships. Thus, we provide multiple types of communication networks expressed in a single, large population with high temporal resolution, and over a period of multiple weeks, a fact which makes the dataset shared here unique. We expect that reuse of this dataset will allow researchers to make progress on the analysis and modeling of human social networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.