Scientific data on the oxidative stability of borage oil, Camelina sativa oil, linseed oil, evening primrose oil and pumpkin seed oil are scarce. Chemiluminescence (CL) methods most commonly used to determine the oxidative stability of oils include measurement of hydroperoxide, intensity of light emitted during the accelerated oxidation process performed at high ([100°C) temperatures or assisted by forced flow of air/oxygen through the sample. The aim of this study was to investigate the chemical composition and oxidative stability of selected vegetable oils available on the Polish market. Oxidative stability was determined using a fast, novel chemiluminescence-based method, in which light emitted during oxidation process conducted at 70°C in the presence of some catalyzing Fe 2? ions is measured. A reaction of the applied type has not been reported so far. High contents of tocopherols and phytosterols were found in the analyzed oil samples. Oxidative stability of the samples was in most cases higher than the stability of refined rapeseed oil, a relatively stable substance from the oxidation point of view.
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Boiss. Mistletoe is a semi-parasitic evergreen shrub, which means it depends on having water and some nutrients supplied from another plant (host tree) while it produces carbohydrates in a process of photosynthesis. Viscum species inhabit many types of wooded habitats and parasitize both deciduous and coniferous trees (Bussing 2000). For clinical applications, the most popular species are mistletoe parasitizing fir, maple, almond, birch, hawthorn, ash, apple, pine, poplar, oak, willow, lime and elm (Kienle et al. 2011). Viscum species have been used in the traditional medicine of Europe for centuries. Hippocrates used mistletoe to treat diseases of the spleen and complaints associated with menstruation, while Pliny the Elder used it to treat epilepsy, infertility and ulcers. In the Middle Ages, Paracelsus recommended mistletoe as a treatment for epilepsy. Hildegard von Bingen described mistletoe as a treatment for diseases of the spleen and liver. Mistletoe was also applied for deworming children, to treat labour pains, gout, affections of the lungs and liver, leprosy, mumps, fractures and hepatitis. During the eighteenth century, mistletoe was applied for "weakness of the heart" and oedema (Bussing 2000). By the end of the nineteenth century, mistletoe was rejected by scientists as a folklore remedy. The scientific interest on mistletoe was awakened in the twentieth century, as Gaultier investigated the effect of oral or subcutaneous Abstract Mistletoe has been used as treatment of many diseases in traditional and folk medicine. To date, anticancer, immunomodulatory, cardiac, antidiabetic, hepatoprotective, neuropharmacological, antibacterial and antifungal properties of mistletoe extracts have been studied the most. In this review, we summarized in vitro and in vivo studies on the pharmacological activity of Viscum species. Furthermore, we proposed the possible mechanisms of action of this herb, which might include many signalling pathways. Mistletoe could regulate either similar or different targets in various pathways that act on membrane receptors, enzymes, ion channels, transporter proteins and transcriptional targets. Still, pharmacological activities of mistletoe have been investigated mainly for crude extracts. It is a new field for scientists to determined which chemical compounds are responsible for the individual biological activities of mistletoe and how these activities are achieved. As a result, mistletoe might become a source of new complementary therapies supporting the treatment of many diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.