Gold-and silver-based plasmonic materials have emerged as game changers in the field of solar-driven small-molecule activation because of their enhanced and broadly tunable absorption cross sections. This review essays the cutting-edge research in the field of plasmon-mediated small-molecule activation while highlighting the role of plasmonic nanostructures as photosensitizers, leading to the advent of numerous photocatalytic materials. Here we initiate the discussion with a basic overview of plasmonic optical properties, followed by a detailed analysis of three major categories of plasmon−catalyst hybrid constructs, namely, single-metal plasmonic materials, plasmon−semiconductor/metalderived systems, and the recently developed plasmon−molecular catalyst assemblies. We also narrate the challenges faced in this nascent research field while depicting the scope of future development by implementing rational modifications of the plasmonic material and/or the cocatalyst to develop innovative hybrid constructs with divergent functionalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.