A number of molecular genetic maps of the soybean [Glycine max (L.) Merr.] have been developed over the past 10 yr. These maps are primarily based on restriction fragment length polymorphism (RFLP) markers. Parental surveys have shown that most RFLP loci have only two known alleles. However, because the soybean is an ancient polyploid, RFLP probes typically hybridize and map to more than one position in the genome. Thus, the polymorphic potential of an RFLP probe is primarily a function of the frequency of the two alleles at each locus the probe detects. In contrast, simple sequence repeat (SSR) markers are single locus markers with multiple alleles. The polymorphic potential of an SSR marker is dependent on the number of alleles and their frequencies. Single locus markers provide an unambiguous means of defining linkage group homology across mapping populations. The objective of the work reported here was to develop and map a large set of SSR markers. A total of 606 SSR loci were mapped in one or more of three populations: the USDA/Iowa State G. max × G. soja F2 population, the Univ. of Utah Minsoy × Noir 1 recombinant inbred population, and the Univ. of Nebraska Clark × Harosoy F2 population. Each SSR mapped to a single locus in the genome, with a map order that was essentially identical in all three populations. Many SSR loci were segregating in two or all three populations. Thus, it was relatively simple to align the 20+ linkage groups derived from each of the three populations into a consensus set of 20 homologous linkage groups presumed to correspond to the 20 pairs of soybean chromosomes. On the basis of in situ segregation or linkage reports in the literature all but one of the classical linkage groups can now be assigned to a corresponding molecular linkage group.
Diagnostic methods were used to identify and quantify Myxobolus cerebralis, a myxozoan parasite of salmonid fish. In this study, 7-week-old, pathogen-free rainbow trout (Oncorhynchus mykiss) were experimentally infected with M. cerebralis and at 7 months postinfection were evaluated with 5 diagnostic assays: 1) pepsin-trypsin digest (PTD) to detect and enumerate spores found in cranial cartilage, 2) 2 different histopathology grading scales that provide a numerical score for severity of microscopic lesions in the head, 3) a conventional single-round polymerase chain reaction (PCR), 4) a nested PCR assay, and 5) a newly developed quantitative real-time TaqMan PCR. There were no significant differences (P > 0.05) among the 5 diagnostic assays in distinguishing between experimentally infected and uninfected control fish. The 2 histopathology grading scales were highly correlated (P < 0.001) for assessment of microscopic lesion severity. Quantification of parasite levels in cranial tissues using PTD and real-time TaqMan PCR was significantly correlated r = 0.540 (P < 0.001). Lastly, 104 copies of the 18S rDNA gene are present in the M. cerebralis genome, a feature that makes this gene an excellent target for PCR-based diagnostic assays. Also, 2 copies of the insulin growth factor-I gene are found in the rainbow trout genome, whose detection can serve both as an internal quality control for amplifiable DNA and as a basis to quantify pathogen genome equivalents present in quantitative PCR assays.
Appressed pubescence genes in soybean cause hairs on the upper surface of leaves to lie flat, while pubescence remains erect elsewhere on the plant. For decades this trait was believed to be controlled in soybean by duplicated single genes, Pa1 and Pa2. However, reports in the literature conflicted as to which phenotype was dominant or recessive. Two populations were developed, each approximately 100 individuals, and each segregating for one of the appressed pubescence genes. A combination of SSRs (simple sequence repeats) and RFLPs (restriction fragment length polymorphisms) were used in each of these populations to map the independent genes. Two-point analysis weakly linked Pa1 and Pa2 to separate linkage groups. Lack of strong linkage suggested the trait may not be controlled by single genes. When QTL (quantitative trait loci) analysis was performed, one major locus and several minor loci were detected in each population. We report the mapping of the genes controlling appressed pubescence in soybean and their placement in homologous regions. Although appressed pubescence was originally reported to be single duplicate genes, we report that it is actually a more complex phenotype with major duplicated genes and minor modifying genes. These results offer interesting implications regarding the evolution of duplicate genetic factors and the definition of qualitative traits.Key words: homoeologous, Glycine, evolution, appressed pubescence, quantitative genetics.
Crown rust, perhaps the most important fungal disease of oat, is caused by Puccinia coronata. An examination of near-isogenic lines (NILs) of hexaploid oat (Avena sativa) was conducted to identify markers linked to genes for resistance to crown rust. These lines were created such that a unique resistance gene is present in each of the two recurrent parent backgrounds. The six NILs of the current study, X434-II, X466-I, and Y345 (recurrent parent C237-89) and D486, D494, and D526 (recurrent parent Lang), thus provide a pair of lines to study each of three resistance genes. Restriction fragment length polymorphisms and resistance loci were mapped using BC1F2 populations. Three markers were found linked to a locus for resistance to crown rust race 203, the closest at 1.9 cM in line D494 and 3.8 cM in line X466-I. In lines D526 and Y345 a marker was placed 1.0 and 1.9 cM, respectively, from the locus conferring resistance to crown rust race 345, and in D486 and X434-II a marker mapped at 8.0 and 10.2 cM from the locus for resistance to rust race 264B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.