Current research shows that digital games can significantly enhance children's learning. The purpose of this study was to examine how design features in 12 digital math games influenced children's learning. The participants in this study were 193 children in Grades 2 through 6 (ages 8-12). During clinical interviews, children in the study completed pre-tests, interacted with digital math games, responded to questions about the digital math games, and completed posttests. We recorded the interactions using two video perspectives that recorded children's gameplay and responses to interviewers. We employed mixed methods to analyze the data and identify salient patterns in children's experiences with the digital math games. The analysis revealed significant gains for 9 of the 12 digital games and most children were aware of the design features in the games. There were eight prominent categories of design features in the video data that supported learning and mathematics connections. Six categories focused on how the design features supported learning in the digital games. These categories included: accuracy feedback, unlimited/multiple attempts, information tutorials and hints, focused constraint, progressive levels, and game efficiency. Two categories were more specific to embodied cognition and action with the mathematics, and focused on how design features promoted mathematics connections. These categories included: linked representations and linked physical actions. The digital games in this study that did not include linked representations and opportunities for linked physical actions as design features did not produce significant gains. These results suggest the key role of mathematics-specific design features in the design of digital math games. Highlights Children made significant learning gains when using 9 of the 12 digital math games Children's awareness of the mathematics in digital math games impacted learning Eight categories of game design features supported children's learning Learning gains were tied to design features that linked representations to the mathematics Learning gains were tied to design features that linked physical actions to the mathematics
The purpose of this study was to examine shifts in young children's learning progression levels while they interacted with virtual manipulative mathematics apps on touch-screen devices. A total of 100 children participated in six mathematics learning sequences while using 18 virtual manipulative mathematics touch-screen apps during clinical interviews. Researchers developed a micro-scoring tool to analyze video data from two camera sources (i.e., GoPro camera, wall-mounted camera). Our results showed that it is possible to document evidence of shifts in children's learning progressions while they are interacting with mathematics apps on touch-screen devices. Our results also indicated patterns in the children's interactions that were related to the shifts in their learning progression levels. These results suggest that an open-ended number of tasks with a variety of representations and tasks at varying levels of difficulty led to children refining their understanding and shaping their concept image of mathematical ideas resulting in incremental shifts in learning. The results of this study have important implications about how mathematical tasks in touch-screen apps may prompt children's incremental learning progression shifts to occur, and thereby promote opportunities for learning. We propose that design features in mathematics apps can be created to support and encourage these learning shifts.
The study reported here examined virtual manipulatives as an instructional treatment in 17 third-and fourth-grade classrooms. Students were randomly assigned to two treatment groups: texts and physical manipulatives (PM), and virtual manipulatives (VM). Results revealed no significant differences in achievement between the treatments. Additional results showed that objective ability predicted fraction achievement; virtual manipulative use can be modulated by test question type (e.g., symbolic vs. pictorial); percentage of class time using representations differed between VM and PM classrooms; and percentage of class time spent using representation types differed, potentially providing differential opportunities to learn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.