Conventional artificial neural networks and convolutional neural networks perform well on the task of automatic handwriting recognition. But, they suffer from long training times and their complex nature. An alternative learning algorithm called Extreme Learning Machine overcomes these shortcomings by determining the weights of a neural network analytically. In this paper, a novel classifier based on Extreme Learning Machine is proposed that achieves competitive accuracy results while keeping training times low. This classifier is called multilayer ensemble Extreme Learning Machine. The novel classifier is evaluated against traditional backpropagation and Extreme Learning Machine on the well-known MNIST dataset. Possible future work on parallel Extreme Learning Machine is shown up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.