The human respiratory tract hosts a diverse community of cocirculating viruses that are responsible for acute respiratory infections. This shared niche provides the opportunity for virus-virus interactions which have the potential to affect individual infection risks and in turn influence dynamics of infection at population scales. However, quantitative evidence for interactions has lacked suitable data and appropriate analytical tools. Here, we expose and quantify interactions among respiratory viruses using bespoke analyses of infection time series at the population scale and coinfections at the individual host scale. We analyzed diagnostic data from 44,230 cases of respiratory illness that were tested for 11 taxonomically broad groups of respiratory viruses over 9 y. Key to our analyses was accounting for alternative drivers of correlated infection frequency, such as age and seasonal dependencies in infection risk, allowing us to obtain strong support for the existence of negative interactions between influenza and noninfluenza viruses and positive interactions among noninfluenza viruses. In mathematical simulations that mimic 2-pathogen dynamics, we show that transient immune-mediated interference can cause a relatively ubiquitous common cold-like virus to diminish during peak activity of a seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an important step towards improved accuracy of disease forecasting models and evaluation of disease control interventions. epidemiology | virology | ecology
The predominant serotypes were III (n=258, 60%) and Ia (n=73, 17%); five serotypes (Ia, Ib, II, III, V) comprised 94% (n=377) of serotyped isolates (n=402). Interpretation: The incidence of invasive infant GBS disease in the UK and Ireland has increased since 2000-2001. The burden of EOD incidence has not declined despite the introduction of national prevention guidelines. New strategies for prevention are required.
Objectives: Weekly monitoring of European all-cause excess mortality, the EuroMOMO network, observed high excess mortality during the influenza B/Yamagata dominated 2017/18 winter season, especially among elderly. We describe all-cause excess and influenza-attributable mortality during the season 2017/18 in Europe. Methods: Based on weekly reporting of mortality from 24 European countries or sub-national regions, representing 60% of the European population excluding the Russian and Turkish parts of Europe, we estimated age stratified all-cause excess morality using the EuroMOMO model. In addition, age stratified all-cause influenza-attributable mortality was estimated using the FluMOMO algorithm, incorporating influenza activity based on clinical and virological surveillance data, and adjusting for extreme temperatures. Results: Excess mortality was mainly attributable to influenza activity from December 2017 to April 2018, but also due to exceptionally low temperatures in February-March 2018. The pattern and extent of mortality excess was similar to the previous A(H3N2) dominated seasons, 2014/15 and 2016/17. The 2017/18 overall all-cause influenza-attributable mortality was estimated to be 25.4 (95%CI 25.0-25.8) per 100,000 population; 118.2 (116.4-119.9) for persons aged 65. Extending to the European population this translates into over-all 152,000 deaths. Conclusions: The high mortality among elderly was unexpected in an influenza B dominated season, which commonly are considered to cause mild illness, mainly among children. Even though A(H3N2) also circulated in the 2017/18 season and may have contributed to the excess mortality among the elderly, the common perception of influenza B only having a modest impact on excess mortality in the older population may need to be reconsidered.
The United Kingdom (UK) is in the third season of introducing universal paediatric influenza vaccination with a quadrivalent live attenuated influenza vaccine (LAIV). The 2015/16 season in the UK was initially dominated by influenza A(H1N1)pdm09 and then influenza of B/Victoria lineage, not contained in that season’s adult trivalent inactivated influenza vaccine (IIV). Overall adjusted end-of-season vaccine effectiveness (VE) was 52.4% (95% confidence interval (CI): 41.0–61.6) against influenza-confirmed primary care consultation, 54.5% (95% CI: 41.6–64.5) against influenza A(H1N1)pdm09 and 54.2% (95% CI: 33.1–68.6) against influenza B. In 2–17 year-olds, adjusted VE for LAIV was 57.6% (95% CI: 25.1 to 76.0) against any influenza, 81.4% (95% CI: 39.6–94.3) against influenza B and 41.5% (95% CI: −8.5 to 68.5) against influenza A(H1N1)pdm09. These estimates demonstrate moderate to good levels of protection, particularly against influenza B in children, but relatively less against influenza A(H1N1)pdm09. Despite lineage mismatch in the trivalent IIV, adults younger than 65 years were still protected against influenza B. These results provide reassurance for the UK to continue its influenza immunisation programme planned for 2016/17.
Since December 2016, excess all-cause mortality was observed in many European countries, especially among people aged ≥ 65 years. We estimated all-cause and influenza-attributable mortality in 19 European countries/regions. Excess mortality was primarily explained by circulation of influenza virus A(H3N2). Cold weather snaps contributed in some countries. The pattern was similar to the last major influenza A(H3N2) season in 2014/15 in Europe, although starting earlier in line with the early influenza season start.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.