a b s t r a c tMead is a traditional drink that contains 8%e18% (v/v) of ethanol, resulting from the alcoholic fermentation of diluted honey by yeasts. Mead fermentation is a time-consuming process and the quality of the final product is highly variable. Therefore, the present investigation had two main objectives: first, to determine the adequate inoculum size of two commercial wine-making strains of Saccharomyces cerevisiae for the optimisation of mead fermentation; and second, to determine if an increase in yeast pitching rates in batch fermentations altered the resulting aroma profiles. Minor differences were detected in the growth kinetics between the two strains at the lowest pitching rate. With increasing pitching rates net growth of the strain ICV D47 progressively decreased, whereas for the QA23 the increasing inoculum size had no influence on its net growth. The time required to reach the same stage of fermentation ranged from 24 to 96 h depending on the inoculum size. The final aroma composition was dependent on the yeast strain and inoculum size. Fourteen of the twenty-seven volatile compounds quantified could contribute to mead aroma and flavour because their concentrations rose above their respective thresholds. The formation of these compounds was particularly pronounced at low pitching rates, except in mead fermented by strain ICV D47, at 10 6 CFUs/mL. The esters isoamyl acetate, ethyl octanoate and ethyl hexanoate were the major powerful odourants found in the meads. The results obtained in this study demonstrate that yeast strain and inoculum size can favourably impact mead's flavour and aroma profiles.
Aims: To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. Methods and Results: Saccharomyces cerevisiae was grown in batch in a defined medium with glucose (200 g l )1 )as the only carbon and energy source, and nitrogen supplied as ammonium sulphate or phosphate forms under different concentrations. The initial nitrogen concentration in the media had no effect on specific growth rates of the yeast strain PYCC 4072. However, fermentation rate and the time required for completion of the alcoholic fermentation were strongly dependent on nitrogen availability. At the stationary phase, the addition of ammonium was effective in increasing cell population, fermentation rate and ethanol.
Conclusions:The yeast strain required a minimum of 267 mg N l )1 to attain complete dryness of media, within the time considered for the experiments. Lower levels were enough to support growth, although leading to sluggish or stuck fermentation. Significance and Impact of the Study: The findings reported here contribute to elucidate the role of nitrogen on growth and fermentation performance of wine yeast. This information might be useful to the wine industry where excessive addition of nitrogen to prevent sluggish or stuck fermentation might have a negative impact on wine stability and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.