A predominantly pig-to-human zoonotic infection caused by the novel Nipah virus emerged recently to cause severe morbidity and mortality in both animals and man. Human autopsy studies showed the pathogenesis to be related to systemic vasculitis that led to widespread thrombotic occlusion and microinfarction in most major organs especially in the central nervous system. There was also evidence of extravascular parenchymal infection, particularly near damaged vessels A recent outbreak of a novel paramyxovirus subsequently named Nipah virus (NiV) infected hundreds of patients in Malaysia causing severe morbidity and a mortality rate of ϳ40%.
Recent evidence indicates that microglial cells may not derive from blood circulating mature monocytes as they express features of myeloid progenitors. Here, we observed that a subpopulation of microglial cells expressed CD34 and B220 antigens during brain development. We thus hypothesized that microglia, or a subset of microglial cells, originate from blood circulating CD34+/B220+ myeloid progenitors, which could target the brain under developmental or neuroinflammatory conditions. Using experimental allergic encephalomyelitis (EAE) as a model of chronic neuroinflammation, we found that a discrete population of CD34+/B220+ cells expands in both blood and brain of diseased animals. In EAE mice, intravenous transfer experiments showed that macrophage-colony stimulating factor (M-CSF) -expanded CD34+ myeloid progenitors target the inflamed central nervous system (CNS) while keeping their immature phenotype. Based on these results, we then assessed whether CD34+/B220+ cells display in vitro differentiation potential toward microglia. For this purpose, CD34+/B220+ cells were sorted from M-CSF-stimulated bone marrow (BM) cultures and exposed to a glial cell conditioned medium. Under these experimental conditions, CD34+/B220+ cells were able to differentiate into microglial-like cells showing the morphological and phenotypic features of native microglia. Overall, our data suggest that under developmental or neuroinflammatory conditions, a subpopulation of microglial cells derive from CNS-invading CD34+/B220+ myeloid progenitors.
Viral infection of the central nervous system (CNS) can result in perturbation of cell-to-cell communication involving the extracellular matrix (ECM). ECM integrity is maintained by a dynamic balance between the synthesis and proteolysis of its components, mainly as a result of the action of matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). An MMP/TIMP imbalance may be critical in triggering neurological disorders, in particular in virally induced neural disorders. In the present study, a mouse model of brain infection using a neurotropic strain of canine distemper virus (CDV) was used to study the effect of CNS infection on the MMP/TIMP balance and cytokine expression. CDV replicates almost exclusively in neurons and has a unique pattern of expression (cortex, hypothalamus, monoaminergic nuclei, hippocampus, and spinal cord). Here we show that although several mouse brain structures were infected, they exhibited a differential pattern in terms of MMP, TIMP, and cytokine expression, exemplified by (i) a large increase in pro-MMP9 levels, in particular in the hippocampus, which occurred mainly in neurons and was associated with in situ gelatinolytic activity, (ii) specific and significant upregulation of MT1-MMP mRNA expression in the cortex and hypothalamus, (iii) an MMP/TIMP imbalance, suggested by the upregulation of TIMP-1 mRNA in the cortex, hippocampus, and hypothalamus and of TIMP-3 mRNA in the cortex, and (iv) a concomitant region-specific large increase in expression of Th1-like cytokines, such as gamma interferon, tumor necrosis factor alpha, and interleukin 6 (IL-6), contrasting with weaker induction of Th2-like cytokines, such as IL-4 and IL-10. These data indicate that an MMP/TIMP imbalance in specific brain structures, which is tightly associated with a local inflammatory process as shown by the presence of immune infiltrating cells, differentially impairs CNS integrity and may contribute to the multiplicity of late neurological disorders observed in this viral mouse model.
Activation of T lymphocytes by human pathogens is a key step in the development of immune-mediated neurologic diseases. Because of their ability to invade the CNS and their increased secretion of proinflammatory cytokines, activated CD4+ T cells are thought to play a crucial role in pathogenesis. In the present study, we examined the expression of inflammatory mediators the cytokine-induced metalloproteinases (MMP-2, -3, and -9) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMP-1, -2, and -3), in human astrocytes in response to activated T cells. We used a model system of CD4+ T lymphocytes activated by persistent viral infection (human T lymphotropic virus, HTLV-I) in transient contact with human astrocytes. Interaction with T cells resulted in increased production of MMP-3 and active MMP-9 in astrocytes despite increased expression of endogenous inhibitors, TIMP-1 and TIMP-3. These data suggest perturbation of the MMP/TIMP balance. These changes in MMP and TIMP expression were mediated, in part, by soluble factors (presumably cytokines) secreted by activated T cells. Integrin-mediated cell adhesion is also involved in the change in MMP level, since blockade of integrin subunits (α1, α3, α5, and β1) on T cells resulted in less astrocytic MMP-9-induced expression. Interestingly, in CNS tissues from neurological HTLV-I-infected patients, MMP-9 was detected in neural cells within the perivascular space, which is infiltrated by mononuclear cells. Altogether, these data emphasize the importance of the MMP-TIMP axis in the complex interaction between the CNS and invading immune cells in the context of virally mediated T cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.