A predominantly pig-to-human zoonotic infection caused by the novel Nipah virus emerged recently to cause severe morbidity and mortality in both animals and man. Human autopsy studies showed the pathogenesis to be related to systemic vasculitis that led to widespread thrombotic occlusion and microinfarction in most major organs especially in the central nervous system. There was also evidence of extravascular parenchymal infection, particularly near damaged vessels A recent outbreak of a novel paramyxovirus subsequently named Nipah virus (NiV) infected hundreds of patients in Malaysia causing severe morbidity and a mortality rate of ϳ40%.
Midbrain dopamine neurons in vivo discharge in a single-spike firing pattern or in a burst-firing pattern. Such activity in vivo strikingly contrasts with the pacemaker activity of the same dopamine neurons recorded in vitro. We have recently shown that burst activity in vivo of midbrain dopamine neurons is due to the local activation of excitatory amino acid receptors, as microapplication of the broad-spectrum antagonist of excitatory amino acids, kynurenic acid, strongly regularized the spontaneous firing pattern of these dopamine neurons. In the present study, we investigated which subtypes of excitatory amino acid receptors are involved in the burst-firing of midbrain dopamine neurons in chloral hydrate-anaesthetized rats, iontophoretic or pressure microejections of 6-cyano, 7-nitroquinoxaline-2,3-dione (CNQX), a non-N-methyl-D-aspartate (NMDA) receptor antagonist, did not alter the spontaneous burst firing of dopamine neurons (n = 36). In contrast, similar ejections of (+-)2-amino,5-phosphonopentanoic acid (AP-5), a specific antagonist at NMDA receptors, markedly regularized the firing pattern by reducing the occurrence of bursts (n = 52). In addition, iontophoretic ejections of NMDA, but not kainate or quisqualate, elicited a discharge of these dopamine neurons in bursts (n = 20, 12 and 14, respectively). These data suggest that burst-firing of midbrain dopamine neurons in vivo results from the tonic activation of NMDA receptors by endogenous excitatory amino acids. In view of the critical dependency of catecholamine release on the discharge pattern of source neurons, excitatory amino acid inputs to midbrain dopamine neurons may constitute a major physiological substrate in the control of the dopamine level in target areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.