The role of the amino group twisting ability in the BODIPY photophysics for nonsterically hindered and constrained molecular structures was studied. When a coplanar disposition of the amino and the BODIPY core is feasible, a hemicyanine-like delocalized π-system gives rise to novel blue and efficient BODIPY laser dyes. The key role of such rotamer is confirmed by newly synthesized derivatives where the amino and the BODIPY core are electronically decoupled by steric repulsions.
A series of meso-substituted boron-bipyrromethene (BODIPY) dyes are synthesized and their laser and photophysical properties systematically studied. Laser emission covering a wide visible spectral region (from blue to orange) is obtained by just changing the electron donor character of the heteroatom at position 8. The additional presence of methyl groups at positions 3 and 5 results in dyes with a photostability similar to that of the unsubstituted dye but with much improved efficiency. Correlation of the lasing properties of the different dyes to their photophysical properties provides inklings to define synthetic strategies of new BODIPY dyes with enhanced efficiency and modulated wavelength emission over the visible spectral region.
A thorough study of the photophysical and laser properties of 8-aminoboron dipyrromethene dyes was undertaken to determine the role of amine substitution and spatial disposition on the properties of the dyes. It was found that the fluorescent and laser response varied significantly. Although primary amines give rise to highly fluorescent products at the blue edge of the visible region, secondary amines yield nonfluorescent analogues in polar media. The crystal structures of two analogues are reported and described. Steric hindrance and the higher electron-releasing ability of the amine favor the formation of a quenching intramolecular charge-transfer state. Accordingly, boron dipyrromethene derivatives with primary amines exhibited laser emission with efficiencies of up to 44%. Besides, the more efficient derivative was also the most photostable, leading to a significant improvement in the lasing performance with regard to previously reported 8-aminoboron dipyrromethene derivatives. An increase in the solvent polarity, and mainly the presence of tertiary cyclic amines, led to a dramatic decrease or even the loss of the laser action.
Herein, we report the synthesis of polyfunctional BODIPY building blocks suitable to be subjected to several reaction sequences with complete chemoselectivity, thereby allowing the preparation of complex BODIPY derivatives in a versatile and programmable manner. The reactions included the Liebeskind-Srogl cross-coupling reaction (LSCC), nucleophilic aromatic substitution (SN Ar), Suzuki, Sonogashira, and Stille couplings, and a desulfitative reduction of the MeS group. This novel synthetic protocol is a powerful route to design a library of compounds with tailored photophysical properties for advanced applications. In this context, it is noteworthy that it offers a straightforward and cost-effective strategy to shift the BODIPY emission deep into the near-infrared spectral region while retaining high fluorescence quantum yields as well as highly efficient and stable laser action. These new dyes outperform the lasing behaviour of dyes considered as benchmarks over the red spectral region, overcoming the important drawbacks associated with these commercial laser dyes, namely low absorption at the standard pump wavelengths (355 and 532 nm) and/or poor photostability.
Two complementary one‐pot, three component synthetic strategies based on copper(I)‐catalyzed azide–alkyne cycloadditions (CuAAC) have been developed, which allow the efficient assembly of glycosyl‐derived alkynes or azides with highly fluorescent boron–dipyrromethene (BODIPY) cores containing azido or alkyne moieties, respectively. The resulting carbohydrate–BODIPY derivatives display excellent photophysical and laser properties that relate to the spacer (amino group or aromatic ring) employed in each of the synthetic protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.