Collective decision making involves on the one hand individual mental states such as beliefs, emotions and intentions, and on the other hand interaction with others with possibly different mental states. Achieving a satisfactory common group decision on which all agree requires that such mental states are adapted to each other by social interaction. Recent developments in social neuroscience have revealed neural mechanisms by which such mutual adaptation can be realised. These mechanisms not only enable intentions to converge to an emerging common decision, but at the same time enable to achieve shared Parts of the work described here were presented in a preliminary form ([3,30] underlying individual beliefs and emotions. This paper presents a computational model for such processes. As an application of the model, an agent-based analysis was made of patterns in crowd behaviour, in particular to simulate a real-life incident that took place on May 4, 2010 in Amsterdam. From available video material and witness reports, useful empirical data were extracted. Similar patterns were achieved in simulations, whereby some of the parameters of the model were tuned to the case addressed, and most parameters were assigned default values. The results show the inclusion of contagion of belief, emotion, and intention states of agents results in better reproduction of the incident than non-inclusion.
Mobile applications have proven to be promising tools for supporting people in adhering to their health goals. Although coaching and reminder apps abound, few of them are based on established theories of behavior change. In the present work, a behavior change support system is presented that uses a computational model based on multiple psychological theories of behavior change. The system determines the user's reason for non-adherence using a mobile phone app and an online lifestyle diary. The user automatically receives generated messages with persuasive, tailored content. The system was designed to support chronic patients with type 2 diabetes, HIV, and cardiovascular disease, but can be applied to many health and lifestyle domains. The main focus of this work is the development of the model and the underlying reasoning method. Furthermore, the implementation of the system and some preliminary results of its functioning will be discussed.
Abstract. Collective decision making involves on the one hand individual mental states such as beliefs, emotions and intentions, and on the other hand interaction with others with possibly different mental states. Achieving a satisfactory common group decision on which all agree requires that such mental states are adapted to each other by social interaction. Recent developments in Social Neuroscience have revealed neural mechanisms by which such mutual adaptation can be realised. These mechanisms not only enable intentions to converge to an emerging common decision, but at the same time enable to achieve shared underlying individual beliefs and emotions. This paper presents a computational model for such processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.