Design methods, frameworks, and green building certifications have been developed to create a sustainable built environment. Despite sustainability advancements, urgent action remains necessary due to climate change and the high impact of the built environment. Regenerative Design represents a shift from current practices focused on reducing environmental impacts, as it aims to generate positive effects on both human and natural systems. Although digital design methods are commonly employed in sustainable design practice and research, there is presently no established framework to guide a digital regenerative design process. This study provides an analysis of existing literature on regenerative design and digital design methods and presents a framework based on building information modelling (BIM) methodology and computational design methods, that can be applied to both urban and building design. This framework identifies digital tools and organizes indicators based on the pillars of climate, people, and nature for regenerative design, drawing upon a comprehensive analysis of literature, including standards, sustainability frameworks and research studies. The framework is illustrated through a case study evaluation. The paper also highlights the potential and limitations of digital methods concerning regenerative design and suggests possibilities for future expansion by incorporating additional quantifiable indicators that reflect research developments, to achieve positive outcomes.
This paper investigates novel computational methods for Regenerative Design by developing further on the European Daylight Standard EN 17037, to make it useful at both urban and architectural scales. Case studies are evaluated for sunlight, daylight and quality views. A computational method, compliant with EN 17037, is introduced for the evaluation of sunlight. An assessment of daylight metrics, for an office building in Helsinki, with a 300 lux target, demonstrates a 12% difference between spatial Daylight Autonomy (sDA; occupied hours) and Illuminance levels (EN 17037 method 2; daylight hours), 37% between sDA and Daylight Factor (EN 17037 method 1), and 25% between methods 1 and 2. A new computational method for evaluating ‘views’ on the floorplan is proposed that considers ‘view content’ (EN 17037 View Out layers), ‘view access’, the potential viewpoint-based ‘outside distance’, and can be extended to add the ‘quality of environmental information’. Further research directions and use of spatial metrics are discussed for sunlight, daylight, and view quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.