The aim of this work is to study laminar mixed convection heat transfer characteristics within an obstructed enclosure by using the Lattice Boltzmann method. Flow is driven by a top cold lid while other walls are stationary and adiabatic. Hot cylinders are located at different places inside the cavity to explore the best arrangement. Comparison of streamlines, isotherms, average Nusselt number are presented to evaluate the influence of Richardson number and location of cylinders on flow field and heat transfer. Results indicate that heat transfer decreases with a rise of Richardson number for all considered arrays of cylinders. Among them, horizontally‐located cylinders at the top of the cavity have the greatest heat transfer at all Richardson numbers. Horizontally located cylinders at the bottom of the cavity have the lowest heat transfer at Richardson numbers of 0.1 and 1 while the lowest heat transfer rate belongs to cross diagonal located cylinders at a Richardson number of 10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.