Telegraph equation which widely used for modeling many engineering and physical phenomena has considered by some researchers in recent years. In this paper, a numerical scheme based on the moving least squares (MLS) approximation and finite difference method (FDM) is proposed for solving a class of the nonlinear hyperbolic telegraph equation with variable coefficients. In the new developed scheme, we use collocation points and approximate solution of the problem under study by using MLS approximation. The MLS method is a meshless approach and does not need any background mesh structure. A time stepping approach is employed for the first- and second-order time derivatives. The proposed method provides a semi-discrete solutions for the problems under study. In space domain, the MLS approximation and in time domain, the finite difference technique are employed. This method after discretization leads to a linear system of algebraic equations. Some numerical results are given and compared with analytical solutions to demonstrate the validity and efficiency of the proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.