Quantitative structure–activity relationship (QSAR) models have been developed for a dataset of 3133 compounds defined as either active or inactive against P. falciparum. Since the dataset was strongly biased towards inactive compounds, different sampling approaches were employed to balance the ratio of actives vs. inactives, and models were rigorously validated using both internal and external validation approaches. The balanced accuracy for assessing the antimalarial activities of 70 external compounds was between 87% and 100% depending on the approach used to balance the dataset. Virtual screening of the ChemBridge database using QSAR models identified 176 putative antimalarial compounds that were submitted for experimental validation, along with 42 putative inactives as negative controls. Twenty five (14.2%) computational hits were found to have antimalarial activities with minimal cytotoxicity to mammalian cells, while all 42 putative inactives were confirmed experimentally. Structural inspection of confirmed active hits revealed novel chemical scaffolds, which could be employed as starting points to discover novel antimalarial agents.
This research describes the use of novel antimalarial combinations of the new artemisinin derivative artemiside, a 10-alkylamino artemisinin. It is a stable, highly crystalline compound that is economically prepared from dihydroartemisinin in a one-step process. Artemiside activity was more pronounced than that of any antimalarial drug in use, both in Plasmodium falciparum culture and in vivo in a murine malaria model depicting cerebral malaria (CM). In vitro high-throughput testing of artemiside combinations revealed a large number of conventional antimalarial drugs with which it was additive. Following monotherapy in mice, individual drugs reduced parasitemias to nondetectable levels. However, after a period of latency, parasites again were seen and eventually all mice became terminally ill. Treatment with individual drugs did not prevent CM in mice with recrudescent malaria, except for piperaquine at high concentrations. Even when CM was prevented, the mice developed later of severe anemia. In contrast, most of the mice treated with drug combinations survived. A combination of artemiside and mefloquine or piperaquine may confer an optimal result because of the longer half life of both conventional drugs. The use of artemiside combinations revealed a significant safety margin of the effective artemiside doses. Likewise, a combination of 1.3 mg/kg of body weight artemiside and 10 mg/kg piperaquine administered for 3 days from the seventh day postinfection was completely curative. It appears possible to increase drug concentrations in the combination therapy without reaching toxic levels. Using the drug combinations as little as 1 day before the expected death of control animals, we could prevent further parasite development and death due to CM or anemic malaria. Earlier treatment may prevent cognitive dysfunctions which might occur after recovery from CM.
A series of 5-aryl-2-amino-
i
midazo
t
hia
d
iazole (ITD) derivatives
were identified by a phenotype-based high-throughput screening using
a blood stage
Plasmodium falciparum
(
Pf
) growth inhibition assay. A lead optimization program focused on
improving antiplasmodium potency, selectivity against human kinases,
and absorption, distribution, metabolism, excretion, and toxicity
properties and extended pharmacological profiles culminated in the
identification of
INE963
(
1
), which demonstrates
potent cellular activity against
Pf
3D7 (EC
50
= 0.006 μM) and achieves “artemisinin-like”
kill kinetics
in vitro
with a parasite clearance
time of <24 h. A single dose of 30 mg/kg is fully curative in the
Pf
-humanized severe combined immunodeficient mouse model.
INE963
(
1
) also exhibits a high barrier to resistance
in drug selection studies and a long half-life (
T
1/2
) across species. These properties suggest the significant
potential for
INE963
(
1
) to provide a curative
therapy for uncomplicated malaria with short dosing regimens. For
these reasons,
INE963
(
1
) was progressed
through GLP toxicology studies and is now undergoing Ph1 clinical
trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.