Abstract. In this paper we consider the problem of drawing and displaying a series of related graphs, i.e., graphs that share all, or parts of the same vertex set. We designed and implemented three different algorithms for simultaneous graph drawing and three different visualization schemes. The algorithms are based on a modification of the force-directed algorithm that allows us to take into account vertex weights and edge weights in order to achieve mental map preservation while obtaining individually readable drawings. The implementation is in Java and the system can be downloaded at http://simg.cs.arizona.edu/.
Abstract-Effectively migrating sequential applications to take advantage of parallelism available on multicore platforms is a well-recognized challenge. This paper addresses important aspects of this issue by proposing a novel profiling technique to automatically detect available concurrency in C programs. The profiler, called Alchemist, operates completely transparently to applications, and identifies constructs at various levels of granularity (e.g., loops, procedures, and conditional statements) as candidates for asynchronous execution. Various dependences including read-after-write (RAW), write-after-read (WAR), and write-after-write (WAW), are detected between a construct and its continuation, the execution following the completion of the construct. The time-ordered distance between program points forming a dependence gives a measure of the effectiveness of parallelizing that construct, as well as identifying the transformations necessary to facilitate such parallelization. Using the notion of post-dominance, our profiling algorithm builds an execution index tree at run-time. This tree is used to differentiate among multiple instances of the same static construct, and leads to improved accuracy in the computed profile, useful to better identify constructs that are amenable to parallelization. Performance results indicate that the profiles generated by Alchemist pinpoint strong candidates for parallelization, and can help significantly ease the burden of application migration to multicore environments.
Abstract. In this paper we consider the problem of drawing and displaying a series of related graphs, i.e., graphs that share all, or parts of the same vertex set. We designed and implemented three different algorithms for simultaneous graph drawing and three different visualization schemes. The algorithms are based on a modification of the force-directed algorithm that allows us to take into account vertex weights and edge weights in order to achieve mental map preservation while obtaining individually readable drawings. The implementation is in Java and the system can be downloaded at http://simg.cs.arizona.edu/.
Migrating sequential programs to effectively utilize next generation multicore architectures is a key challenge facing application developers and implementors. Languages like Java that support complex control-and dataflow abstractions confound classical automatic parallelization techniques. On the other hand, introducing multithreading and concurrency control explicitly into programs can impose a high conceptual burden on the programmer, and may entail a significant rewrite of the original program.In this paper, we consider a new technique to address this issue. Our approach makes use of futures, a simple annotation that introduces asynchronous concurrency into Java programs, but provides no concurrency control. To ensure concurrent execution does not yield behavior inconsistent with sequential execution (i.e., execution yielded by erasing all futures), we present a new interprocedural summary-based dataflow analysis. The analysis inserts lightweight barriers that block and resume threads executing futures if a dependency violation may ensue. There are no constraints on how threads execute other than those imposed by these barriers.Our experimental results indicate futures can be leveraged to transparently ensure safety and profitably exploit parallelism; in contrast to earlier efforts, our technique is completely portable, and requires no modifications to the underlying JVM.
Abstract. The graphael system implements several traditional forcedirected layout methods, as well as several novel layout methods for non-Euclidean geometries, including hyperbolic and spherical. The system can handle large graphs, using multi-scale variations of the forcedirected methods. Moreover, graphael can layout and visualize graphs that evolve though time, using static views, animation, and morphing. The implementation includes a powerful interface that allows the user to put together existing algorithms and visualization techniques, and to easily add new ones. The system is written in Java and is available as a downloadable program or as an applet at http://graphael.cs.arizona.edu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.