Cellulosic fibre-based smart materials exhibiting multiple capabilities are getting tremendous attention due to their wide application areas. In this work, multifunctional flax fabrics with piezoresistive response were developed through the combined functionalization with silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs). Biodegradable polyethylene glycol (PEG) was used to produce AgNPs, whereas ZnONPs were synthetized via a simple and low-cost method. Flax fabrics with and without NPs were characterized by Ground State Diffuse Reflectance (GSDR), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and Thermogravimetric analysis (TGA). After creating a conductive surface by flax functionalization with AgNPs, ZnONPs were synthetized onto these fabrics. The developed fibrous systems exhibited piezoresistive response and the sensor sensitivity increased with the use of higher ZnO precursor concentrations (0.4 M). Functionalized fabrics exhibited excellent antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, higher hydrophobicity (WCA changed from 00 to >1000), UV radiation resistance, and wash durability. Overall, this work provides new insights regarding the bifunctionalization of flax fabrics with Ag/ZnO nanostructures and brings new findings about the combined effect of both NPs for the development of piezoresistive textile sensors with multifunctional properties.
The piezoresistive response of epoxy/vapor-grown carbon nanofiber composites prepared by four different dispersion methods achieving different dispersion levels has been investigated. The composite response was measured as a function of carbon nanofiber loading for the different dispersion methods. Strain sensing by variation of the electrical resistance was tested through four-point bending experiments, and the dependence of the gauge factor as a function of the deformation and velocity of deformation was calculated as well as the stability of the electrical response. The composites demonstrated an appropriate response for being used as a piezoresistive sensor. Specific findings were that the intrinsic piezoresistive response was only effective around the percolation threshold and that good cluster dispersion was more appropriate for a good piezoresistive response than a uniform dispersion of individual nanofibers. The application limits of these materials for sensor applications are also addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.