By definition, the floral morphs of distylous plants differ in floral architecture. Yet, because cross-pollination is necessary for reproductive success in both morphs, they should not differ in attributes that contribute to attracting and rewarding floral visitors. Floral and vegetative attributes that function in distylous polymorphism in hummingbird-pollinated Palicourea padifolia (Rubiaceae) and the responses of pollinators and insect herbivores to the resources offered by both morphs were investigated. The performance of each morph along multiple stages of the reproductive cycle, from inflorescence and nectar production to fruit production, was surveyed, and pollinator behavior and nectar standing crops were then observed. Costs associated with such attractiveness were also evaluated in terms of herbivore attack and of plant reproductive fitness (female function) as a function of leaf herbivory. The number of inflorescences, floral buds, open flowers, and ripe fruits offered by either floral morph were similar, but short-styled plants almost doubled the number of developing fruits of long-styled plants. Long-styled flowers produced higher nectar volumes and accumulated more nectar over time than short-styled flowers. Measures of nectar standing crop and data on pollinator behavior suggest that hummingbirds respond to this morph-specific scheduling of nectar production. Lastly, long-styled plants suffered a higher herbivore attack and lost more leaf area over time than those with short-styled flowers. Herbivory was negatively correlated with fruit number and fruit mass, and long-styled plants set significantly less fruit mass than short-styled plants. The results suggest that pollinators and herbivores may exert selective pressures on floral and vegetative traits that could also influence gender function.
Abstract. The allometric relationships of trees in temperate and tropical forests are relatively well known, but not those of woody shrubs or transitional (shrub/tree) life forms. We explored the transition of Prosopis glandulosa var. torreyana from tree to shrub along a semi‐arid topographic sequence comprising of six landforms (hillslope, footslope, upper and lower bajada, playa and dune) with varying soil texture and water availability. In each landform, we measured P. glandulosa shoot pre‐dawn water potentials (Ψ) in one ‘dry’ and one ‘wet’ year. We also measured plant height, widest basal stem diameter, crown area and number of basal branches. Total basal stem area was calculated. We used simple (Model II linear regression) and expanded (incorporating an asymptote to height or crown area) allometry models to compare height with widest basal stem diameter and crown area with total basal stem area. There were significant correlations between maximum plant size and inter‐year Ψ means suggesting that soil water availability decreased down the topographical sequence. The height asymptote was statistically significant in all landforms and lower toward finer‐textured soils. On the other hand, crown area was a linear function of total basal stem area and was also site specific. Our results suggest that more basal branches are produced as plant height decreases in more stressful environments, effectively increasing crown area with a minimum investment in supporting tissues. The polymorphic characteristics of Prosopis may partly explain their occurrence in many arid and semi‐arid environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.