RESUMEN: Las instituciones financieras buscan cada día reducir los costos operativos relacionados con el otorgamiento del crédito, para tal fin se desarrolla un modelo score que permita lograr dicho objetivo. Este trabajo utiliza las metodologías de la regresión logística y el análisis discriminante tomando como referencia una base de datos conformada por 469.996 clientes pertenecientes a la modalidad del microcrédito, de los cuales se tienen variables cualitativas y cuantitativas. El objetivo es encontrar el mejor modelo que permita tener la mejor estimación y que evidencie beneficios a la hora de tener un modelo score. Se concluye que la regresión logística es el modelo que mejor diferencia y pronostica los clientes buenos de los malos, logrando conseguir reducir el nivel de pérdidas esperadas.Palabras Clave: microcrédito, riesgo de crédito, probabilidad de incumplimiento y modelo score.ABSTRACT: Financial institutions seek every day to reduce operating costs related to the granting of credit, for this purpose a score model is developed to achieve this objective. This work uses the methodologies of logistic regression and discriminant analysis, taking as a reference a database made up of 469,996 clients belonging to the microcredit modality, of which there are qualitative and quantitative variables. The objective is to find the best model that allows to have the best estimate and that shows benefits when having a score model. It is concluded that logistic regression is the model that best differentiates and predicts good customers from bad ones, managing to reduce the level of expected losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.