Gamification has been widely employed in the educational domain over the past eight years when the term became a trend. However, the literature states that gamification still lacks formal definitions to support the design and analysis of gamified strategies. This paper analysed the game elements employed in gamified learning environments through a previously proposed and evaluated taxonomy while detailing and expanding this taxonomy. In the current paper, we describe our taxonomy in-depth as well as expand it. Our new structured results demonstrate an extension of the proposed taxonomy which results from this process, is divided into five dimensions, related to the learner and the learning environment. Our main contribution is the detailed taxonomy that can be used to design and evaluate gamification design in learning environments.
Tools for automatic grading programming assignments, also known as Online Judges, have been widely used to support computer science (CS) courses. Nevertheless, few studies have used these tools to acquire and analyse interaction data to better understand the students’ performance and behaviours, often due to data availability or inadequate granularity. To address this problem, we propose an Online Judge called CodeBench, which allows for fine‐grained data collection of student interactions, at the level of, eg, keystrokes, number of submissions, and grades. We deployed CodeBench for 3 years (2016–18) and collected data from 2058 students from 16 introductory computer science (CS1) courses, on which we have carried out fine‐grained learning analytics, towards early detection of effective/ineffective behaviours regarding learning CS concepts. Results extract clear behavioural classes of CS1 students, significantly differentiated both semantically and statistically, enabling us to better explain how student behaviours during programming have influenced learning outcomes. Finally, we also identify behaviours that can guide novice students to improve their learning performance, which can be used for interventions. We believe this work is a step forward towards enhancing Online Judges and helping teachers and students improve their CS1 teaching/learning practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.