We propose a reliable fabrication process enabling the integration of dielectric and metallic nanostructures on the tip of optical fibers, thus representing a further step in the "lab-on-fiber" technology roadmap. The proposed fabrication procedure involves conventional deposition and nanopatterning techniques, typically used for planar devices, but here adapted to directly operate on optical fiber tip. Following this approach, we demonstrate a first technological platform based on the integration onto the optical fiber tip of two-dimensional hybrid metallo-dielectric nanostructures supporting localized surface plasmon resonances. By means of experimental measurements and full-wave numerical simulations, we characterize these resonant phenomena and investigate the underlying physics. We show that resonances can be easily tuned by acting on the physical and geometrical parameters of the structure. Moreover, with a view toward possible applications, we present some preliminary results demonstrating how the proposed device can work effectively as an optical probe for label-free chemical and biological sensing as well as a microphone for acoustic wave detection.
This review presents an overview of “Lab on Fiber” technologies and devices with special focus on the design and development of advanced fiber optic nanoprobes for biological applications. Depending on the specific location where functional materials at micro and nanoscale are integrated, “Lab on Fiber Technology” is classified into three main paradigms: Lab on Tip (where functional materials are integrated onto the optical fiber tip), Lab around Fiber (where functional materials are integrated on the outer surface of optical fibers), and Lab in Fiber (where functional materials are integrated within the holey structure of specialty optical fibers). This work reviews the strategies, the main achievements and related devices developed in the “Lab on Fiber” roadmap, discussing perspectives and challenges that lie ahead, with special focus on biological sensing applications.
The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top-down approaches, are discussed. In conclusion we highlight some of the further development opportunities, including lab-in-a-needle technology, which could have a direct and disruptive impact in localized cancer treatment applications.
Precision medicine is continuously demanding for novel point of care systems, potentially exploitable also for in-vivo analysis. Biosensing probes based on Lab-On-Fiber Technology have been recently developed to meet these challenges. However, devices exploiting standard label-free approaches (based on ligand/target molecule interaction) suffer from low sensitivity in all cases where the detection of small molecules at low concentrations is needed. Here we report on a platform developed through the combination of Lab-On-Fiber probes with microgels, which are directly integrated onto the resonant plasmonic nanostructure realized on the fiber tip. In response to binding events, the microgel network concentrates the target molecule and amplifies the optical response, leading to remarkable sensitivity enhancement. Moreover, by acting on the microgel degrees of freedom such as concentration and operating temperature, it is possible to control the limit of detection, tune the working range as well as the response time of the probe. These unique characteristics pave the way for advanced label-free biosensing platforms, suitably reconfigurable depending on the specific application.In biochemical sensing field, Lab-on -Fiber (LOF) based devices essentially consist on the combination of optical resonant nanostructures (typically patterned metallic slab supporting surface plasmon resonances (SPR)) and functional coating materials integrated on the optical fiber tip [1][2][3][4][5][6][7] . LOF technology is continuously leading to the development of novel biosensing probes with unique properties in term of size, weight and ease of interrogation 4,5 . In addition to point of care applications, LOF based devices seem to be particularly promising for in-vivo analysis systems, thanks to the intrinsic properties of optical fibers that make them easily integrable inside medical catheters or needles 8 . Typically, the working principle of LOF probes relies on the affinity interaction of a ligand attached to the sensor surface with the target molecule present in a liquid solution at a certain concentration. However, standard label-free approaches fail when target molecules are small, for example about a few hundreds of dalton. In that case, the ligand/analyte binding process produces a biological layer that is not thick enough for providing a local refractive index (RI) change that is optically detectable by the sensor. Analogous issues occur in such applications where the detection of larger analytes with very low limit of detection (LOD) is required. To enhance the sensitivity, gold and magnetic nanoparticles have been proposed as "molecular concentrators" able to localize multiple binding events on a single particle, and successively deliver target analyte from the solution to the sensor surface [9][10][11] . At the same time, approaches exploiting hydrogels (HGs) have been proposed 12,13 . HGs basically allow to: i) increase the analyte loading capacity by translating a conventional 2D interaction surface into a 3D volume inter...
We have recently proposed a valuable fabrication route for the integration and patterning of functional materials at nanoscale onto optical fibers, posing the basis for a new technological vision named "Lab-on-Fiber". The validation of the proposed process has been carried out through the realization, directly onto the fiber tip, of 2D metallodielectric nanocrystals supporting localized surface plasmon resonances. In this work, we demonstrate the effectiveness of the proposed methodology to realize optical nanoprobes for label-free chemical and biological sensing as well as basic components for novel polarization sensitive photonic devices. Specifically, we first demonstrate how it is possible to tailor the field distribution of the plasmonic mode enabling the control on the refractive index sensitivity. With a view toward surface sensitivity, we experimentally observe that the proposed device is able to detect the formation of nanosized overlays over very limited active areas. Moreover, we demonstrate how to control the number and the field distribution of the excited plasmonic resonance posing new basis for the resonance engineering. Finally, we show how to obtain polarization sensitive devices with the same technological platform, by breaking the circular crystal symmetry at both unit cell or entire lattice level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.