Terahertz (THz) emission increase is observed for GaAs thin films that exhibit structural defects. The GaAs epilayers are grown by molecular beam epitaxy on exactly oriented Si (100) substrates at three different temperatures (Ts = 320ºC, 520ºC and 630ºC). The growth method involves the deposition of two low-temperature-grown (LTG)-GaAs buffers with subsequent in-situ thermal annealing at Ts = 600ºC. Reflection high energy electron diffraction confirms the layer-by-layer growth mode of the GaAs on Si. X-ray diffraction shows the improvement in crystallinity as growth temperature is increased. The THz time-domain spectroscopy is performed in reflection and transmission excitation geometries. At Ts = 320ºC, the low crystallinity of GaAs on Si makes it an inferior THz emitter in reflection geometry, over a GaAs grown at the same temperature on a semi-insulating GaAs substrate. However, in transmission geometry, the GaAs on Si exhibits less absorption losses. At higher Ts, the GaAs on Si thin films emerge as promising THz emitters despite the presence of antiphase boundaries and threading dislocations as identified from scanning electron microscopy and Raman spectroscopy. An intense THz emission in reflection and transmission excitation geometries is observed for the GaAs on Si grown at Ts = 520ºC, suggesting the existence of an optimal growth temperature for GaAs on Si at which the THz emission is most efficient in both excitation geometries. The results are significant in the growth design and fabrication of GaAs on Si material system intended for future THz photoconductive antenna emitter devices.
The application of a p-n homojunction based on zinc oxide (ZnO) nanorods as photodetector is presented in this study. The homojunctions were grown via chemical bath deposition for 6, 9, and 12 hours per layer of the junction. X-ray diffraction and scanning electron micrographs confirmed the material composition, structure, and morphology of the grown device. Current-voltage (I-V) measurements were done to verify the diode-like behavior of the ZnO p-n homojunction. Upon illumination, it is observed through I-V curves and through photocurrent measurements that the fabricated device is sensitive to ultraviolet and near-infrared light, respectively. The peak sensitivities in the photocurrent spectrum were found tunable based on the observed red shift as the length of the nanorods is increased. In addition to this, upon applying a positive voltage bias, the response of the device was observed to enhance by 5 orders of magnitude. In general, the device was successfully proven to have a great potential for applications in photodetection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.