Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.
Las condiciones oceanográficas del océano Pacífico nororiental frente a Baja California (México) se estudian sistemáticamente mediante el programa Investigaciones Mexicanas de la Corriente de California (IMECOCAL), que es una extensión hacia el sur del programa California Cooperative Fisheries Investigations (CalCOFI). La síntesis de la información a largo plazo obtenida de estos programas Oceanographic conditions over the continental shelf off Magdalena Bay (Mexico) in 2011-2012 Condiciones oceanográficas en la plataforma continental frente a bahía Magdalena (México) en 2011-2012
The Gulf of Ulloa, a highly productive area off the western coast of Baja California Peninsula, is examined for five successive years (2003–2007) by using satellite data and seasonal net primary productivity estimates obtained by a vertical generalized production model. The results clearly identify a seasonal signal of coastal upwelling in productivity estimates. Highest values occur from May to June and sometimes July. We also find influence of an equatorward coastal current able of transporting water from neighboring north upwelling areas to the Gulf of Ulloa in winter–spring. This flow contributes to increase the seasonal net primary productivity. The opposite occurs in summer, when a warm poleward current of tropical characteristics arrives to the region. Our findings reveal that such warm coastal current suppressed the productivity in the whole
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.