DHP was more effective and better tolerated than AAQ against multidrug-resistant P. falciparum and P. vivax infections. The prolonged therapeutic effect of piperaquine delayed the time to P. falciparum reinfection, decreased the rate of recurrence of P. vivax infection, and reduced the risk of P. vivax gametocyte carriage and anemia.
Dihydroartemisinin-piperaquine (DHP) is an important new treatment for drug-resistant malaria, although pharmacokinetic studies on the combination are limited. In Papua, Indonesia, we assessed determinants of the therapeutic efficacy of DHP for uncomplicated malaria. Plasma piperaquine concentrations were measured on day 7 and day 28, and the cumulative risk of parasitological failure at day 42 was calculated using survival analysis. Of the 598 patients in the evaluable population 342 had infections with Plasmodium falciparum, 83 with Plasmodium vivax, and 173 with a mixture of both species. The unadjusted cumulative risks of recurrence were 7.0% (95% confidence interval [CI]: 4.6 to 9.4%) for P. falciparum and 8.9% (95% CI: 6.0 to 12%) for P. vivax. After correcting for reinfections the risk of recrudescence with P. falciparum was 1.1% (95% CI: 0.1 to 2.1%). The major determinant of parasitological failure was the plasma piperaquine concentration. A concentration below 30 ng/ml on day 7 was observed in 38% (21/56) of children less than 15 years old and 22% (31/140) of adults (P ؍ 0.04), even though the overall dose (mg per kg of body weight) in children was 9% higher than that in adults (P < 0.001). Patients with piperaquine levels below 30 ng/ml were more likely to have a recurrence with P. falciparum (hazard ratio [HR] ؍ 6.6 [95% CI: 1.9 to 23]; P ؍ 0.003) or P. vivax (HR ؍ 9.0 [95% CI: 2.3 to 35]; P ؍ 0.001). The plasma concentration of piperaquine on day 7 was the major determinant of the therapeutic response to DHP. Lower plasma piperaquine concentrations and higher failure rates in children suggest that dose revision may be warranted in this age group.
Background. Designing interventions that will reduce transmission of vivax malaria requires knowledge of Plasmodium vivax gametocyte dynamics.Methods. We analyzed data from a randomized controlled trial in northwestern Thailand and 2 trials in Papua, Indonesia, to identify and compare risk factors for vivax gametocytemia at enrollment and following treatment.Results. A total of 492 patients with P. vivax infections from Thailand and 476 patients (162 with concurrent falciparum parasitemia) from Indonesia were evaluable. Also, 84.3% (415/492) and 66.6% (209/314) of patients with monoinfection were gametocytemic at enrollment, respectively. The ratio of gametocytemia to asexual parasitemia did not differ between acute and recurrent infections (P = .48 in Thailand, P = .08 in Indonesia). High asexual parasitemia was associated with an increased risk of gametocytemia during follow-up in both locations. In Thailand, the cumulative incidence of gametocytemia between day 7 and day 42 following dihydroartemisinin + piperaquine (DHA + PIP) was 6.92% vs 29.1% following chloroquine (P < .001). In Indonesia, the incidence of gametocytemia was 33.6% following artesunate + amodiaquine (AS + AQ), 7.42% following artemether + lumefantrine, and 6.80% following DHA + PIP (P < .001 for DHA + PIP vs AS + AQ).Conclusions. P. vivax gametocyte carriage mirrors asexual-stage infection. Prevention of relapses, particularly in those with high asexual parasitemia, is likely the most important strategy for interrupting P. vivax transmission.
BackgroundA practical and simple regimen for all malaria species is needed towards malaria elimination in Indonesia. It is worth to compare the efficacy and safety of a single dose of artemisinin-naphthoquine (AN) with a three-day regimen of dihydroartemisinin-piperaquine (DHP), the existing programme drug, in adults with uncomplicated symptomatic malaria.MethodsThis is a phase III, randomized, open label using sealed envelopes, multi-centre, comparative study between a single dose of AN and a three-day dose of DHP in Jayapura and Maumere. The modified WHO inclusion and exclusion criteria for efficacy study were used in this trial. A total of 401 eligible adult malaria subjects were hospitalized for three days and randomly treated with AN four tablets single dose on day 0 or DHP three to four tablets single daily dose for three days, and followed for 42 days for physical examination, thick and thin smears microscopy, and other necessary tests. The efficacy of drug was assessed by polymerase chain reaction (PCR) uncorrected and corrected.ResultsThere were 153 Plasmodium falciparum, 158 Plasmodium vivax and 90 P. falciparum/P. vivax malaria. Mean of fever clearance times were similar, 13.0 ± 10.3 hours in AN and 11.3 ± 7.3 hours in DHP groups. The mean of parasite clearance times were longer in AN compared with DHP (28.0 ± 11.7 hours vs 25.5 ± 12.2 hours, p = 0.04). There were only 12 PCR-corrected P. falciparum late treatment failures: seven in AN and five in DHP groups. The PCR uncorrected and corrected on day −42 of adequate clinical and parasitological responses for treatment of any malaria were 93.7% (95% Cl: 90.3–97.2) and 96.3% (95% Cl: 93.6–99.0) in AN, 96.3% (95% Cl: 93.5–99.0) and 97.3% (95% Cl: 95.0–99.6) in DHP groups. Few and mild adverse events were reported. All the abnormal haematology and blood chemistry values had no clinical abnormality.ConclusionAN and DHP are confirmed very effective, safe and tolerate for treatment of any malaria. Both drugs are promising for multiple first-line therapy policies in Indonesia.
BackgroundArtesunate-amodiaquine (AS-AQ) is one of the most widely used artemisinin-based combination therapies (ACTs) to treat uncomplicated Plasmodium falciparum malaria in Africa. We investigated the impact of different dosing strategies on the efficacy of this combination for the treatment of falciparum malaria.MethodsIndividual patient data from AS-AQ clinical trials were pooled using the WorldWide Antimalarial Resistance Network (WWARN) standardised methodology. Risk factors for treatment failure were identified using a Cox regression model with shared frailty across study sites.ResultsForty-three studies representing 9,106 treatments from 1999-2012 were included in the analysis; 4,138 (45.4%) treatments were with a fixed dose combination with an AQ target dose of 30 mg/kg (FDC), 1,293 (14.2%) with a non-fixed dose combination with an AQ target dose of 25 mg/kg (loose NFDC-25), 2,418 (26.6%) with a non-fixed dose combination with an AQ target dose of 30 mg/kg (loose NFDC-30), and the remaining 1,257 (13.8%) with a co-blistered non-fixed dose combination with an AQ target dose of 30 mg/kg (co-blistered NFDC). The median dose of AQ administered was 32.1 mg/kg [IQR: 25.9-38.2], the highest dose being administered to patients treated with co-blistered NFDC (median = 35.3 mg/kg [IQR: 30.6-43.7]) and the lowest to those treated with loose NFDC-25 (median = 25.0 mg/kg [IQR: 22.7-25.0]). Patients treated with FDC received a median dose of 32.4 mg/kg [IQR: 27-39.0]. After adjusting for reinfections, the corrected antimalarial efficacy on day 28 after treatment was similar for co-blistered NFDC (97.9% [95% confidence interval (CI): 97.0-98.8%]) and FDC (98.1% [95% CI: 97.6%-98.5%]; P = 0.799), but significantly lower for the loose NFDC-25 (93.4% [95% CI: 91.9%-94.9%]), and loose NFDC-30 (95.0% [95% CI: 94.1%-95.9%]) (P < 0.001 for all comparisons). After controlling for age, AQ dose, baseline parasitemia and region; treatment with loose NFDC-25 was associated with a 3.5-fold greater risk of recrudescence by day 28 (adjusted hazard ratio, AHR = 3.51 [95% CI: 2.02-6.12], P < 0.001) compared to FDC, and treatment with loose NFDC-30 was associated with a higher risk of recrudescence at only three sites.ConclusionsThere was substantial variation in the total dose of amodiaquine administered in different AS-AQ combination regimens. Fixed dose AS-AQ combinations ensure optimal dosing and provide higher antimalarial treatment efficacy than the loose individual tablets in all age categories.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-015-0301-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.