Stimulus-response (S-R) coupling in platelets requires an intermediary other than an elevation in cytosolic free calcium ([Ca2+]i). While an increase in [Ca2+]i is essential in S-R coupling, effecting phosphorylation of myosin of relative molecular mass (Mr) 20,000 (20 K), platelet activation is also associated with phosphorylation of a 40K protein, which can occur in the absence of changes in [Ca2+]i. The 40K protein is the substrate for protein kinase C (PKC). Mounting evidence suggests that activation of PKC by diacylglycerol is the other signal involved in S-R coupling. Although phosphorylation of the 40K protein is associated with certain platelet functional responses, no precise role has been accredited to it. Recently, we and others have described several proteins (collectively known as lipocortin) which inhibit phospholipase A2 (PLA2). One of the most conspicuous proteins of this group is a 40K peptide whose inhibitory activity can be suppressed by prior phosphorylation. We hypothesized that the 40K protein described in platelets may possess anti-PLA2 activity and that phosphorylation by PKC, suppressing its inhibitory activity, may represent the mechanism underlying mobilization of arachidonic acid, the precursor of prostaglandins. The results of the present study strongly support this hypothesis.
This study shows that PPARgamma agonists inhibit cytokine-induced proteoglycan degradation mediated by both aggrecanase and MMP. This effect is associated with inhibition of production of MMP-3 and -9. These results support the interest for PPARgamma agonists as candidate inhibitors of pathological cartilage degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.