Deep Neural Networks (DNNs) are very popular because of their high performance in various cognitive tasks in Machine Learning (ML). Recent advancements in DNNs have brought beyond human accuracy in many tasks, but at the cost of high computational complexity. To enable efficient execution of DNN inference, more and more research works, therefore, exploit the inherent error resilience of DNNs and employ Approximate Computing (AC) principles to address the elevated energy demands of DNN accelerators. This article provides a comprehensive survey and analysis of hardware approximation techniques for DNN accelerators. First, we analyze the state of the art and by identifying approximation families, we cluster the respective works with respect to the approximation type. Next, we analyze the complexity of the performed evaluations (with respect to the dataset and DNN size) to assess the efficiency, the potential, and limitations of approximate DNN accelerators. Moreover, a broad discussion is provided, regarding error metrics that are more suitable for designing approximate units for DNN accelerators as well as accuracy recovery approaches that are tailored to DNN inference. Finally, we present how Approximate Computing for DNN accelerators can go beyond energy efficiency and address reliability and security issues, as well.
Printed Electronics (PE) exhibits on-demand, extremely lowcost hardware due to its additive manufacturing process, enabling machine learning (ML) applications for domains that feature ultra-low cost, conformity, and non-toxicity requirements that silicon-based systems cannot deliver. Nevertheless, large feature sizes in PE prohibit the realization of complex printed ML circuits. In this work, we present, for the first time, an automated printed-aware software/hardware co-design framework that exploits approximate computing principles to enable ultra-resource constrained printed multilayer perceptrons (MLPs). Our evaluation demonstrates that, compared to the state-of-the-art baseline, our circuits feature on average 6x (5.7x) lower area (power) and less than 1% accuracy loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.