Improving the heat-moisture-light stability of organic-inorganic perovskites, a widely studied semiconductor material class, is a critical challenge. Compositional search within multinary perovskites employing brute force synthesis followed by environmental tests are prohibitively expensive in large chemical spaces. To identify the most stable multi-cation lead iodide perovskites containing Cs, formamidinium (FA) and methylammonium (MA), we fuse results from density functional theory (DFT) calculations and in situ thin-film degradation test within an end-toend machine learning (ML) algorithm to inform the compositional optimization of CsxMAyFA1-x-yPbI3. We integrate phase thermodynamics modelling as a probabilistic constraint in a Bayesian optimization (BO) loop, which effectively guides the experimental search while considering both structural and environmental stability. After three optimization rounds and only sampling 1.8% of the compositional space, we identify thin-film compositions centred at Cs0.17MA0.03FA0.80PbI3 that achieve a 3x delay in macroscopic degradation onset under elevated temperature, humidity, and light compared with the more complex state-of-the-art Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3. We find up to 8% of MA can be incorporated into the perovskite structure before stability is significantly compromised. Cs is beneficial at low concentrations, however, beyond 17% is found to contribute to reduced stability. Synchrotron-based grazing-incidence wide-angle X-ray scattering (GIWAXS) further validates that the interplay of chemical decomposition and phase separation governs the non-linear instability landscape of this compositional space. We reveal the detrimental role of the ẟ-CsPbI3 minority phase in accelerating degradation and it can be kinetically suppressed by cooptimising Cs and MA content, providing insights into simplifying perovskite compositions for further environmental stability enhancement. Our approach realizes the effectiveness of MLenabled data fusion in achieving a holistic, efficient, and physics-informed experimentation for multinary systems, potentially generalisable to materials search in the vast structural and alloyed spaces beyond halide perovskites.
Carbon based perovskite solar cells are fabricated for the first time in a room temperature environment by employing inkjet infiltration of perovskite precursor ink. The fabricated perovskite solar cells exhibit impressive performance reproducibility with this automated method and exhibit high stability when exposed to 35 °C for a period of 1046 hours.
Environmental stability of perovskite solar cells (PSCs) has been improved by trial-and-error exploration of thin low-dimensional (LD) perovskite deposited on top of the perovskite absorber, called the capping layer. In this study, a machine-learning framework is presented to optimize this layer. We featurize 21 organic halide salts, apply them as capping layers onto methylammonium lead iodide (MAPbI3) films, age them under accelerated conditions, and determine features governing stability using supervised machine learning and Shapley values. We find that organic molecules’ low number of hydrogen-bonding donors and small topological polar surface area correlate with increased MAPbI3 film stability. The top performing organic halide, phenyltriethylammonium iodide (PTEAI), successfully extends the MAPbI3 stability lifetime by 4 ± 2 times over bare MAPbI3 and 1.3 ± 0.3 times over state-of-the-art octylammonium bromide (OABr). Through characterization, we find that this capping layer stabilizes the photoactive layer by changing the surface chemistry and suppressing methylammonium loss.
The long term stability of air processed inkjet infiltrated carbon based perovskite solar cells (CPSCs) is investigated under intense ultra-violet light soaking equivalent to 1.5 Sun UV light illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.