S ources of radiation exposure to the U.S. population are derived from five broad categories: (a) ubiquitous background radiation (including radon); (b) medical procedures in patients; (c) consumer products or activities involving radiation sources; (d) industrial, security, medical, educational, and research radiation sources; and (e) occupational sources in specific categories of workers. Comprehensive assessments of the frequency and associated doses from radiologic and nuclear medicine procedures are conducted only rarely. In the United States, assessments of diagnostic radiologic procedures were conducted in 1964 (1), 1970 (2), and 1980 (3) by the U.S. Food and Drug Administration and Mettler et al (4). Beginning about 1980, the Center for Devices and Radiological Health of the Food and Drug Administration conducted more focused surveys, which included dosimetry data for selected radiologic procedures. The last comprehensive estimates of uses of medical radiation in the United States were performed more than 10 years ago and were published in 2009 by Mettler et al (5) and the National Council on Radiation Protection and Measurements (NCRP) in its Report 160 (6) using data
The goal of this study was to investigate the willingness of Medical Reserve Corps (MRC) volunteers to participate in public health emergency-related activities by assessing their attitudes and beliefs. MRC volunteers responded to an online survey organized around the Extended Parallel Process Model (EPPM). Respondents reported agreement with attitude/belief statements representing perceived threat, perceived efficacy, and personal/organizational preparedness in 4 scenarios: a weather-related disaster, a pandemic influenza emergency, a radiological (''dirty bomb'') emergency, and an inhalational anthrax bioterrorism emergency. Logistic regression analyses were used to evaluate predictors of volunteer response willingness. In 2 response contexts (if asked and regardless of severity), self-reported willingness to respond was higher among those with a high perceived self-efficacy than among those with low perceived self-efficacy. Analyses of the association between attitude/belief statements and the EPPM profiles indicated that, under all 4 scenarios and with few exceptions, those with a perceived high threat/high efficacy EPPM profile had statistically higher odds of agreement with the attitude/belief statements than those with a perceived low threat/low efficacy EPPM profile. The radiological emergency consistently received the lowest agreement rates for the attitude/belief statements and response willingness across scenarios. The findings suggest that enrollment with an MRC unit is not automatically predictive of willingness to respond in these types of scenarios. While MRC volunteers' self-reported willingness to respond was found to differ across scenarios and among different attitude and belief statements, the identification of self-efficacy as the primary predictor of willingness to respond regardless of severity and if asked highlights the critical role of efficacy in an organized volunteer response context.
One of the key issues in the aftermath of an exploded radiological dispersal device from a terrorist event is that of the contaminated victim and the concern among healthcare providers for the harmful exposures they may receive in treating patients, especially if the patient has not been thoroughly decontaminated. This is critically important in the event of mass casualties from a nuclear or radiological incident because of the essential rapidity of acute medical decisions and that those who have life- or limb-threatening injuries may have treatment unduly delayed by a decontamination process that may be unnecessary for protecting the health and safety of the patient or the healthcare provider. To estimate potential contamination of those exposed in a radiological dispersal device event, results were used from explosive aerosolization tests of surrogate radionuclides detonated with high explosives at the Sandia National Laboratories. Computer modeling was also used to assess radiation dose rates to surgical personnel treating patients with blast injuries who are contaminated with any of a variety of common radionuclides. It is demonstrated that exceptional but plausible cases may require special precautions by the healthcare provider, even while managing life-threatening injuries of a contaminated victim from a radiological dispersal device event.
This article summarizes major points from a newly released guide published online by the Office of the Assistant Secretary for Preparedness and Response (ASPR). The article reviews basic principles about radiation and its measurement, short-term and long-term effects of radiation, and medical countermeasures as well as essential information about how to prepare for and respond to a nuclear detonation. A link is provided to the manual itself, which in turn is heavily referenced for readers who wish to have more detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.