That animals and humans can accomplish the same goal using different effectors and different goals using the same effectors attests to the remarkable flexibility of the central nervous system. This phenomenon has been termed 'motor equivalence', an example being the writing of a name with a pencil held between the toes or teeth. The idea of motor equivalence has reappeared because single-cell studies in monkeys have shown that parameters of voluntary movement (such as direction) may be specified in the brain, relegating muscle activation to spinal interneuronal systems. Using a novel experimental paradigms and a full-head SQUID (for superconducting quantum interference device) array to record magnetic fields corresponding to ongoing brain activity, we demonstrate: (1), a robust relationship between time-dependent activity in sensorimotor cortex and movement velocity, independent of explicit task requirements; and (2) neural activations that are specific to task demands alone. It appears, therefore, that signatures of motor equivalence in humans may be found in dynamic patterns of cortical activity.
Using an approach that combines experimental studies of bimanual movements to visual stimuli and theoretical modeling, the present paper develops a dynamical account of sensorimotor learning, that is, how new skills are acquired and old ones modified. A significant aspect of our approach is the focus on the individual learner as the basic unit of analysis, in particular the quantification of predispositions and capabilities that the individual learner brings to the learning environment. Such predispositions constitute the learner's behavioral repertoire, captured here theoretically as a dynamical landscape (“intrinsic dynamics”). The learning process is demonstrated to not only lead to a relatively permanent improvement of performance in the required task—the usual outcome—but also to alter the individual's entire repertoire. Changes in the dynamical landscape due to learning are shown to result from two basic mechanisms or “routes”: bifurcation and shift. Which mechanism is selected depends the initial individual repertoire before new learning begins. Both bifurcation and shift mechanisms are accommodated by a dynamical model, a relatively straightforward development of the well-established HKB model of movement coordination. Model simulations show that although environmental or task demands may be met equally well using either mechanism, the bifurcation route results in greater stabilization of the to-be-learned behavior. Thus, stability not (or not only) error is demonstrated to be the basis of selection, both of a new pattern of behavior and the path (smooth shift versus abrupt qualitative change) that learning takes. In line with these results, recent neurophysiological evidence indicates that stability is a relevant feature around which brain activity is organized while an individual performs a coordination task. Finally, we explore the consequences of the dynamical approach to learning for theories of biological change.
Dynamic systems have proven to be well suited to describe a broad spectrum of human coordination behavior such synchronization with auditory stimuli. Simultaneous measurements of the spatiotemporal dynamics of electroencephalographic (EEG) and magnetoencephalographic (MEG) data reveals that the dynamics of the brain signals is highly ordered and also accessible by dynamic systems theory. However, models of EEG and MEG dynamics have typically been formulated only in terms of phenomenological modeling such as fixed-current dipoles or spatial EEG and MEG patterns. In this paper, it is our goal to connect three levels of organization, that is the level of coordination behavior, the level of patterns observed in the EEG and MEG and the level of neuronal network dynamics. To do so, we develop a methodological framework, which defines the spatiotemporal dynamics of neural ensembles, the neural field, on a sphere in three dimensions. Using magnetic resonance imaging we map the neural field dynamics from the sphere onto the folded cortical surface of a hemisphere. The neural field represents the current flow perpendicular to the cortex and, thus, allows for the calculation of the electric potentials on the surface of the skull and the magnetic fields outside the skull to be measured by EEG and MEG, respectively. For demonstration of the dynamics, we present the propagation of activation at a single cortical site resulting from a transient input. Finally, a mapping between finger movement profile and EEG/MEG patterns is obtained using Volterra integrals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.