Photoelectrocatalytic water splitting by using various TiO2 nanostructures is a promising approach to generate hydrogen without harmful byproducts. However, their effective performance is restricted by some drawbacks such as high rapid electron-hole pair recombination and backward reaction producing H2O. Thus in this study, the probability of enhancing hydrogen generation rate by adding methanol as a sacrificial agent to the anodic chamber of a two-compartment photoelectrochemical cell is investigated. Herein, one-dimensional elongated TiO2 nanorods that were fabricated via a facile one-pot hydrothermal method are utilized as potent photoanode. Voltammetric characterizations confirm that addition of alcoholic sacrificial agent has a significant effect on photoelectrochemical properties of TiO2 nanorods which by adding 10 wt% of methanol, the photocurrent density and photoconversion efficiency increased from 0.8mA.cm-2 to 1.5mA.cm-2 and from 0.28% to 0.45%, respectively. The results of photoelectrocatalytic water splitting indicated that the hydrogen generation rate in the presence of methanol was about 1.2 times higher than that from pure water splitting. These enhancements can be attributed to the key role of methanol. Methanol molecules not only inhibit the electron-hole pair recombination but also accelerate the hydrogen generation rate by sharing their hydrogen atoms.
TiO2 nanorod as a superior nanostructure has attracted a lot of attention to exert in the photocatalytic and photoelectrocatlytic applications in recent years. Nevertheless, its practical usage is restricted by a number of limitations such as the large band gap energy, the low rate of photo-induced carriers generation and the high rate of charge carriers recombination. Therefore in this study, incorporation of TiO2 nanorod with WO3 is proposed as a suitable approach to overcome these defects. In this regard, WO3-TiO2 nanorod was constructed by a facile one pot hydrothermal method in two incessant steps and was then employed as a potent photoanode for photoelectrocatalytic hydrogen generation. The morphology, elemental compositions and optical properties were characterized by the FESEM, EDS and DRS analysis, respectively. Furthermore, voltammetry analyses were performed to assay the photoelectrochemical features of WO3-TiO2 nanorod. The results confirmed that the incorporation of TiO2 nanorod with WO3 not only significantly made the band gap energy narrower (from 3eV to 2eV), but also dramatically intensified the photocurrent density and photoconversion efficiency from 1mA.cm-2 to 1.8mA.cm-2 and from 0.3% to 0.45%, respectively. As a consequence of improving optical properties and photoelectrochemical features, WO3-TiO2 nanorod could generate 2.43 mmol H2 during 100 min under UV irradiation, which was 1.71 times more than hydrogen generated over pure TiO2 nanorod
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.