For the efficient removal of some anionic dyes, a novel adsorbent was developed. The adsorbent was prepared by coating a synthetic polymer on magnetite nanosphere surface as a magnetic carrier. The synthesized nano-adsorbent was fully characterized using Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer, X-ray diffractometer, scanning electron microscope, and transmission electronic microscopy measurements. The synthesized nano-adsorbent showed high adsorption capacity towards removal of some anionic dyes (221.4, 201.6, and 135.3 mg g À1 for reactive red 195, reactive yellow 145, and reactive blue 19 dye, respectively) from aqueous samples. The dye adsorption was thoroughly studied from both kinetic and equilibrium points of view. It was found that the Langmuir isotherm showed a better correlation with the experimental data. The kinetic data showed that the process was very fast, and the adsorption process followed pseudo-second order kinetic models for the modified magnetic nano-adsorbent. Furthermore, the results showed that a stable and reusable (up to 20 cycles) nano-adsorbent for dye removal purposes was synthesized.
The ability of molecules
and systems to make copies of themselves
and the ability of molecules to fold into stable, well-defined three-dimensional
conformations are of considerable importance in the formation and
persistence of life. The question of how, during the emergence of
life, oligomerization reactions become selective and channel these
reactions toward a small number of specific products remains largely
unanswered. Herein, we demonstrate a fully synthetic chemical system
where structurally complex foldamers and self-replicating assemblies
emerge spontaneously and with high selectivity from pools of oligomers
as a result of forming noncovalent interactions. Whether foldamers
or replicators form depends on remarkably small differences in building
block structures and composition and experimental conditions. We also
observed the dynamic transformation of a foldamer into a replicator.
These results show that the structural requirements/design criteria
for building blocks that lead to foldamers are similar to those that
lead to replicators. What determines whether folding or replication
takes place is not necessarily the type of noncovalent interaction,
but only whether they occur intra- or intermolecularly. This work
brings together, for the first time, the fields of replicator and
foldamer chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.