SUMMARY Confidence judgments are a central example of metacognition—knowledge about one’s own cognitive processes. According to this metacognitive view, confidence reports are generated by a second-order monitoring process based on the quality of internal representations about beliefs. Although neural correlates of decision confidence have been recently identified in humans and other animals, it is not well understood whether there are brain areas specifically important for confidence monitoring. To address this issue, we designed a postdecision temporal wagering task in which rats expressed choice confidence by the amount of time they were willing to wait for reward. We found that orbitofrontal cortex inactivation disrupts waiting-based confidence reports without affecting decision accuracy. Furthermore, we show that a normative model can quantitatively account for waiting times based on the computation of decision confidence. These results establish an anatomical locus for a metacognitive report, confidence judgment, distinct from the processes required for perceptual decisions.
Prediction error signals enable us to learn through experience. These experiences include economic choices between different rewards that vary along multiple dimensions. Therefore, an ideal way to reinforce economic choice is to encode a prediction error that reflects the subjective value integrated across these reward dimensions. Previous studies demonstrated that dopamine prediction error responses reflect the value of singular reward attributes that include magnitude, probability, and delay. Obviously, preferences between rewards that vary along one dimension are completely determined by the manipulated variable. However, it is unknown whether dopamine prediction error responses reflect the subjective value integrated from different reward dimensions. Here, we measured the preferences between rewards that varied along multiple dimensions, and as such could not be ranked according to objective metrics. Monkeys chose between rewards that differed in amount, risk, and type. Because their choices were complete and transitive, the monkeys chose "as if" they integrated different rewards and attributes into a common scale of value. The prediction error responses of single dopamine neurons reflected the integrated subjective value inferred from the choices, rather than the singular reward attributes. Specifically, amount, risk, and reward type modulated dopamine responses exactly to the extent that they influenced economic choices, even when rewards were vastly different, such as liquid and food. This prediction error response could provide a direct updating signal for economic values.electrophysiology | primate | behavioral economics | reinforcement learning P rediction errors represent the difference between predicted and realized outcomes. As such they are an ideal way to learn through everyday experiences (1). These experiences include making value-based (economic) choices between different rewards and evaluating the outcome of such decisions. Some of the most common economic decisions we face are between rewards that lack a common quality for comparison. To facilitate consistent choices between them, such rewards should be evaluated on a common scale of value (2-4). Thus, an ideal way to facilitate and reinforce economic decisions is to encode the prediction error directly in terms of subjective value. Midbrain dopamine neurons encode a reward prediction error (5-7) that is sufficient to cause learning (8, 9). These neurons receive inputs from several brain areas that encode subjective value and project axons to every brain structure implicated in economic choice (10-21). Therefore, dopamine neurons are ideally positioned to broadcast a teaching signal that directly updates economic values.Economic preferences between alternatives that vary in one attribute are easily determined by the magnitude of the attribute (22). For instance, larger rewards are preferred over smaller ones, high reward probability is preferred over low reward probability, and reward delivered after a short delay is preferred over the same r...
SummaryBackgroundOptimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity.ResultsIn two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions’ shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles.ConclusionsThese data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility).
Summary Central to the organization of behavior is the ability to predict the values of outcomes to guide choices. The accuracy of such predictions is honed by a teaching signal that indicates how incorrect a prediction was (‘reward prediction error’, RPE). In several reinforcement learning contexts such as Pavlovian conditioning and decisions guided by reward history, this RPE signal is provided by midbrain dopamine neurons. In many situations, however, the stimuli predictive of outcomes are perceptually ambiguous. Perceptual uncertainty is known to influences choices, but it has been unclear whether or how dopamine neurons factor it into their teaching signal. To cope with uncertainty, we extended a reinforcement learning model with a belief state about the perceptually ambiguous stimulus; this model generates an estimate of the probability of choice correctness, termed decision confidence. We show that dopamine responses in monkeys performing a perceptually ambiguous decision task comply with the model’s predictions. Consequently, dopamine responses did not simply reflect a stimulus’ average expected reward value, but were predictive of the trial-to-trial fluctuations in perceptual accuracy. These confidence-dependent dopamine responses emerged prior to monkeys’ choice initiation raising the possibility that dopamine impacts impeding decisions, in addition to encoding a post-decision teaching signal. Finally, by manipulating reward size, we found that dopamine neurons reflect both the upcoming reward size and the confidence in achieving it. Together, our results show that dopamine responses convey teaching signals that are also appropriate for perceptual decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.