At present, the most common used crosslinking process for carboxylated nitrile butadiene rubber (XNBR) latex is an accelerated sulfur curing system with zinc oxide. To avoid allergenic reactions related to residual accelerator levels in dipped XNBR latex articles such as medical gloves, a dual curing process has been developed combining thermal and photochemical crosslinking reactions. The two-step procedure involves the formation of covalent and ionic bonds to ensure good mechanical properties of the final products. The photochemical thiol-ene reaction is used to generate covalent crosslinks between the remaining C¼ ¼C double bonds of the butadiene units whereas the carboxylic moieties are conventionally cured with divalent metal oxides (ZnO) under elevated temperature (formation of ionic crosslinks). The photochemical curing step is carried out both in the latex phase using a falling film photoreactor (prevulcanization) as well as in the solid phase by UV irradiation of dried XNBR films (postvulcanization). The mechanical properties and crosslink densities of the cured XNBR films are determined and the influence of selected curing parameters is assessed. The results give evidence that a combined approach of thermal prevulcanization and photochemical postvulcanization makes the production of latex articles (e.g., gloves) with tailored properties and good skin compatibility feasible.
The photochemical prevulcanization of natural rubber (NR) latex via the thiol-ene reaction is a new approach aiming at the replacement of noxious processing agents used in conventional sulfur vulcanization processes (e.g., accelerators) together with cost saving options. The crosslinking reaction involves the excitation of a selected photoinitiator with ultraviolet (UV) light which is followed by the formation of thioether links due to the thiol-ene addition reaction. The photochemical process is carried out in a falling film photoreactor which provides not only a continuous prevulcanization process but also exhibits a technology which is already commercially well established. The main advantage of the falling film process lies in the short prevulcanization time and the mild reaction temperature. Following the idea of the manufacture of low-allergenic surgical gloves made from NR latex without compromising on the glove quality by means of physical performance, crucial process parameters of the falling film process have been determined and characterized in this study. Surgical gloves were made from the photocured NR latex which was prevulcanized using selected process conditions. The physical properties including tensile strength, elongation, modulus, and crosslink density were examined together with the aging stability and the stability against high-energy radiation (sterilization with gamma rays). It was found that the UV light intensity, the number of illumination cycles, the choice of photoinitiator, and the thiol crosslinker play an important part in the glove quality.
The UV induced prevulcanization of natural rubber (NR) latex provides an innovative technology for an efficient cross-linking. In the photochemical process, a selected photoinitiator and a poly-functional thiol are added to the NR latex. Free radicals (bond cleavage of the photoinitiator) are generated due to UV irradiation and cross-linking of the latex particles is then achieved by a thiol-ene addition reaction. The thiol-ene addition reaction in NR films is characterized with Fourier transform infrared and Raman spectroscopy. To achieve the prevulcanization of latex, both a thin film photoreactor and a falling film photoreactor are applied. Solid latex films are then produced by conventional dipping of the precured NR latex. The NR latex films are distinguished by good skin compatibility due to the absence of sensitizing or irritating processing agents which are used in conventional sulfur vulcanization. Moreover UV cross-linked films display excellent physical properties as well as high aging stabilities. Further advantages of the new technology compared to conventional sulfur vulcanization are low energy consumption together with short vulcanization times.
Alkyd resins are polyesters containing unsaturated fatty acids that are used as binding agents in paints and coatings. Chemical drying of these polyesters is based on heavy metal catalyzed cross-linking of the unsaturated fatty acid moieties. Among the heavy-metal catalysts, cobalt complexes are the most effective, yet they have been proven to be carcinogenic. Therefore, strategies to replace the cobalt-based catalyst by environmentally friendlier and less toxic alternatives are under development. Here, we demonstrate for the first time that a laccase-mediator system can effectively replace the heavy-metal catalyst and cross-link alkyd resins. Interestingly, the biocatalytic reaction does not only work in aqueous media, but also in a solid film, where enzyme diffusion is limited. Within the catalytic cycle, the mediator oxidizes the alkyd resin and is regenerated by the laccase, which is uniformly distributed within the drying film as evidenced by confocal laser scanning microscopy. During gradual build-up of molecular weight, there is a concomitant decrease of the oxygen content in the film. A new optical sensor to follow oxygen consumption during the cross-linking reaction was developed and validated with state of the art techniques. A remarkable feature is the low sample amount required, which allows faster screening of new catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.