Identifying what is at the center of the meaning of a word and what discriminates it from other words is a fundamental natural language inference task. This paper describes an explicit word vector representation model (WVM) to support the identification of discriminative attributes. A core contribution of the paper is a quantitative and qualitative comparative analysis of different types of data sources and Knowledge Bases in the construction of explainable and explicit WVMs: (i) knowledge graphs built from dictionary definitions, (ii) entity-attribute-relationships graphs derived from images and (iii) commonsense knowledge graphs. Using a detailed quantitative and qualitative analysis, we demonstrate that these data sources have complementary semantic aspects, supporting the creation of explicit semantic vector spaces. The explicit vector spaces are evaluated using the task of discriminative attribute identification, showing comparable performance to the state-ofthe-art systems in the task (F1-score = 0.69), while delivering full model transparency and explainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.