Uapaca kirkiana is an indigenous fruit tree that grows in hot and dry areas in sub-Saharan Africa. The tree tolerates dry conditions, high temperatures and acts as a food source for people that live in drier conditions were exotic fruit trees can hardly survive. The tree produced fruits that are rich in essential minerals and has a potential to act as a source of vitamin C. Ripe fruits are eaten raw and mostly sold at local and roadside markets with no processing. Traditionally the fruit can be processed into various products which include alcoholic and non-alcoholic beverages and traditional cakes. The fruit has a potential to improve nutritional status, food security, and livelihoods of rural dwellers especially in arid and semi-arid areas. However, the contribution of the fruit to human nutrition is often not recognised. The fruit, like most indigenous fruits, has limited and out-dated data on nutrient composition. Indigenous knowledge on handling and uses of the fruit needs to be upgraded. This review attempts to contribute to this effort by evaluating the existing evidence on its nutritional potential, functional and bioactive properties, Armistice Chawafambira
Globally, a ninth of people use polluted water sources because an estimated 300–400 Mt of waste and 90% of sewage are discharged into water bodies from industries and developing countries, respectively. The utilisation of indigenous fruit pits in producing novel adsorbents will greatly benefit in wastewater treatment. In most underdeveloped countries, activated carbon (AC) is imported at a high cost. The study was aimed at synthesising and characterisation of AC obtained from Marula nutshell. Carbonization of organic matter from Marula nutshell was carried out at 200°C, 400°C, 500°C, and 600°C. Sulphuric (H2SO4) and phosphoric (H3PO4) acids were used as activating agents at concentrations of 20–60% ( v / v ). Physicochemical characteristics of the AC, such as bulk density, moisture, ash, pH, and iodine number, were analyzed using standard methods. Functional groups and total carbon content were determined using the FTIR spectroscopy and Nitrogen Carbon Sulphur (NCS) analyzer, respectively. The values of carbon yield and total carbon in activated samples with H2SO4 and H3PO4 were 32.2–93.2%, 26.9–95.8%, and 46–79%, 20.8–69.8%, respectively. The pH, ash, moisture, and bulk density of activated high carbon samples with H2SO4 ranged from 2.4–6.1, 0.65–3.49%, 1.3–8.4%, and 0.42–0.62 gcm−3, respectively. Activated high carbon samples with H3PO4 had 2.7–3.2, 11.3–29.8%, 4.7–14.6%, and 0.39–0.54 gcm−3 pH, ash, moisture, and bulk density, respectively. The synthesised AC samples with 40% H3PO4 at 500°C had the highest iodine value of 1075.7 mg/g. FTIR results showed the presence of aliphatic carboxylic acid salt, inorganic nitrate (NO3−), and phosphate groups in the synthesised AC and were not significantly different ( p < 0.05 ) from commercial AC. The untreated Marula nutshell had some aliphatic hydrocarbon (alkanes), inorganic phosphate ( PO 4 3 − ), aliphatic ester (–COO), and aliphatic carboxylic acid salt (–C(=O)O–) groups. A novel adsorbent, AC was produced from Marula nutshell with the potential to be used in water treatment.
Uapaca kirkiana is an underutilised indigenous fruit tree (IFT) found in the miombo ecological zone in sub-Saharan Africa. Furthermore, sub-Saharan Africa is home to many nutritionally insecure people who suffer from micronutrient deficiency. The incorporation of probiotic strains in jams as a possible way of enhancing mineral accessibility, food quality, and health is limited in Africa. This study monitored the probiotic potential, bioaccessible iron and zinc, and organoleptic properties of U. kirkiana fruit jam fermented with L. rhamnosus yoba. U. kirkiana fruits were collected from semiarid rural areas of Zimbabwe. The L. rhamnosus yoba strain was obtained from the Yoba for Life Foundation, Netherlands. Mineral and biochemical properties of the probiotic jam were analysed using AOAC standard methods. The U. kirkiana fruit tree was ranked first as a food resource by most rural populations in Zimbabwe. The probiotic jam formulation had 55% (wt/vol) U. kirkiana fruit pulp, 43% (wt/vol) sugar, 1.25% (wt/vol) pectin, 0.5% (wt/vol) citric acid, and 0.25% (wt/vol) L. rhamnosus yoba strain. The probiotic jam had 6.2 ± 0.2 log CFU/mL viable L. rhamnosus yoba cells. Iron and zinc content (mg/100 g w.b.) was 4.13 ± 0.22 and 0.68 ± 0.02 with pH 3.45 ± 0.11 , respectively. Nutrient content was g/100 g w.b., carbohydrate 66 ± 4.1 , fat 0.1 ± 0.01 , crude protein 0.2 ± 0.01 , ash 0.7 ± 0.02 , and crude fiber 0.3 ± 0.01 . Bioaccessible iron and zinc were 6.55 ± 0.36 % and 16.1 ± 0.50 % and increased by 4% and 2% in the probiotic jam, respectively. Mineral bioaccessibility and nutrient content were significantly different ( p < 0.05 ) in jam with 0.25% L. rhamnosus yoba. Jam acceptance rating was 83%. The probiotic jam can be used as a sustainable food containing probiotic with potential nutritional and health benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.