We study the feedback stabilization of the Boussinesq system in a two dimensional domain, with mixed boundary conditions. After ascertaining the precise loss of regularity of the solution in such models, we prove first Green's formulas for functions belonging to weighted Sobolev spaces and then correctly define the underlying control system. This provides a rigorous mathematical framework for models studied in the engineering literature. We prove the stabilizability by extending to the linearized Boussinesq system a local Carleman estimate already established for the Oseen system. Then we determine a feedback control law able to stabilize the linearized system around the stationary solution, with any prescribed exponential decay rate, and able to stabilize locally the nonlinear system.
We study the well-posedness of a system of one-dimensional partial differential equations modeling blood flows in a network of vessels with viscoelastic walls. We prove the existence and uniqueness of maximal strong solution for this type of hyperbolic/parabolic model. We also prove a stability estimate under suitable nonlinear Robin boundary conditions.
In this paper, we study the controllability of a fluid-structure interaction system. We consider a viscous and incompressible fluid modeled by the Boussinesq system and the structure is a rigid body with arbitrary shape which satisfies Newton's laws of motion. We assume that the motion of this system is bidimensional in space. We prove the local null controllability for the velocity and temperature of the fluid and for the position and velocity of rigid body for a control acting only on the temperature equation on a fixed subset of the fluid domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.