In this paper we describe a new release of a Web scale entity graph that serves as the backbone of Microsoft Academic Service (MAS), a major production effort with a broadened scope to the namesake vertical search engine that has been publicly available since 2008 as a research prototype. At the core of MAS is a heterogeneous entity graph comprised of six types of entities that model the scholarly activities: field of study, author, institution, paper, venue, and event. In addition to obtaining these entities from the publisher feeds as in the previous effort, we in this version include data mining results from the Web index and an in-house knowledge base from Bing, a major commercial search engine. As a result of the Bing integration, the new MAS graph sees significant increase in size, with fresh information streaming in automatically following their discoveries by the search engine. In addition, the rich entity relations included in the knowledge base provide additional signals to disambiguate and enrich the entities within and beyond the academic domain. The number of papers indexed by MAS, for instance, has grown from low tens of millions to 83 million while maintaining an above 95% accuracy based on test data sets derived from academic activities at Microsoft Research. Based on the data set, we demonstrate two scenarios in this work: a knowledge driven, highly interactive dialog that seamlessly combines reactive search and proactive suggestion experience, and a proactive heterogeneous entity recommendation.
-In May 2012, two major earthquakes occurred in the Emilia-Romagna region, Northern Italy, followed by further aftershocks and earthquakes in June 2012. This sequence of earthquakes and shocks caused multiple casualties, and widespread damage to numerous historical buildings in the region. The Italian National Fire Corps deployed disaster response and recovery of people and buildings. In June 2012, they requested the aid of the EU-funded project NIFTi, to assess damage to historical buildings, and cultural artifacts located therein. To this end, NIFTi deployed a team of humans and robots (UGV, UAV) in the red-area of Mirandola, EmiliaRomagna, from Tuesday July 24 until Friday July 27, 2012. The team worked closely together with the members of the Italian National Fire Corps involved in the red area. This paper describes the deployment, and experience.
The paper describes experience with applying a user-centric design methodology in developing systems for human-robot teaming in Urban Search and Rescue. A human-robot team consists of several semi-autonomous robots (rovers/UGVs, microcopter/UAVs), several humans at an off-site command post (mission commander, UGV operators) and one on-site human (UAV operator). This system has been developed in close cooperation with several rescue organizations, and has been deployed in a real-life tunnel accident use case. The human-robot team jointly explores an accident site, communicating using a multi-modal team interface, and spoken dialogue. The paper describes the development of this complex socio-technical system per se, as well as recent experience in evaluating the performance of this system
We address the performance of transmission geometry volume holograms as depth-selective imaging elements. We consider two simple implementations using holograms recorded with spherical and plane beams. We derive the point-spread function (PSF) of these systems using volume diffraction theory and use the PSF to estimate depth resolution. Furthermore, we show that appropriately designed objective optics can significantly improve the depth resolution or the working distance of plane-wave reference holographic imaging systems. These results are confirmed experimentally and demonstrated for objects with millimeter axial features, imaged from the 5- to 50-cm range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.