Purpose-The purpose of this paper is to use the practical application of tools provided by social network theory for the detection of potential influencers from the point of view of marketing within online communities. It proposes a method to detect significant actors based on centrality metrics. Design/methodology/approach-A matrix is proposed for the classification of the individuals that integrate a social network based on the combination of eigenvector centrality and betweenness centrality. The model is tested on a Facebook fan page for a sporting event. NodeXL is used to extract and analyze information. Semantic analysis and agent-based simulation are used to test the model. Findings-The proposed model is effective in detecting actors with the potential to efficiently spread a message in relation to the rest of the community, which is achieved from their position within the network. Social network analysis (SNA) and the proposed model, in particular, are useful to detect subgroups of components with particular characteristics that are not evident from other analysis methods. Originality/value-This paper approaches the application of SNA to online social communities from an empirical and experimental perspective. Its originality lies in combining information from two individual metrics to understand the phenomenon of influence. Online social networks are gaining relevance and the literature that exists in relation to this subject is still fragmented and incipient. This paper contributes to a better understanding of this phenomenon of networks and the development of better tools to manage it through the proposal of a novel method.
El presente trabajo propone una aplicación de herramientas provenientes del análisis de redes sociales y de programación para la explotación de información de una comunidad online, más específicamente una red social bimodal, obtenida de la web a través del uso de la técnica de web scraping. Se detallan desde un enfoque teórico y práctico los pasos seguidos en el proceso de extracción y procesamiento de la información obtenida de www.tripadvisor.com, se genera un modelo de red social que relaciona diferentes tipos de actores dentro de la red, y se aplica un modelo para detectar de individuos influyentes propuesto anteriormente por el mismo grupo de investigación. Por último se describe la aplicación de herramientas de análisis cuantitativo a los datos obtenidos como minería de texto, frecuencia y nubes de palabras. El trabajo aborda un problema de marketing contemporáneo desde los métodos cuantitativos y la teoría de redes sociales combinando técnicas conocidas en una forma novedosa. Su resultado es el descubrimiento de información valiosa no evidente desde otros métodos de análisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.