The use of bioresorbable polymers as a support for culturing cells has received special attention as an alternative for the treatment of lesions and the loss of tissue. The aim of this work was to evaluate the degradation in cell culture medium of dense and porous scaffolds of poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid-co-glycolic acid) (50:50) (PLGA50) prepared by casting. The adhesion and morphology of osteoblast cells on the surface of these polymers was evaluated. Thermal analyses were done by differential scanning calorimetry and thermogravimetric analysis and cell morphology was assessed by scanning electron microscopy. Autocatalysis was observed in PLGA50 samples because of the concentration of acid constituents in this material. Samples of PLLA showed no autocatalysis and hence no changes in their morphology, indicating that this polymer can be used as a structural support. Osteoblasts showed low adhesion to PLLA compared to PLGA50. The cell morphology on the surface of these materials was highly dispersed, which indicated a good interaction of the cells with the polymer substrate.
In recent years, there has been a great interest in the development of biomaterials that could be used in the repair of bone defects. Collagen matrix (CM) has the advantage that it can be modified chemically to improve its mechanical properties. The aim of the present study was to evaluate the effect of three-dimensional membranes of native or anionic (submitted to alkaline treatment for 48 or 96 h) collagen matrix on the consolidation of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats subjected to hormone replacement therapy. The animals received the implants 4 months after ovariectomy and were sacrificed 8 weeks after implantation of the membranes into 4-mm wide bone defects created in the distal third of the femur with a surgical bur. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas, suggesting that the material was biocompatible. Microscopic analysis showed a lower amount of bone ingrowth in the areas receiving the native membrane compared to the bone defects filled with the anionic membranes. In ovariectomized animals receiving anionic membranes, a delay in bone regeneration was observed mainly in animals not subjected to hormone replacement therapy. We conclude that anionic membranes treated with alkaline solution for 48 and 96 h presented better results in terms of bone ingrowth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.